{"title":"工程生物炭(Fe2o3-Bc)纳米复合材料在二元和三元水溶液中的吸附性能研究","authors":"Tobias T. Shumba, Bridgette V. Musamirapamwe","doi":"10.13005/msri/190207","DOIUrl":null,"url":null,"abstract":"The binary and ternary adsorptions of Pb (II), methyl orange (MO) and brilliant blue (BB) on engineered biochar (Fe2O3-BC) nano-composite using pyrolysis and microwave activation were investigated in this work. Batch experiments were conducted to investigate the capacity of Fe2O3BC to remove MO, Pb and BB in binary and ternary aqueous solutions. MO removal was higher in MO-Pb binary solution than in ternary MO solution. A large amount of adsorbent dosage, high concentration and longer time were witnessed to achieve maximum removals in ternary solutions as compared to binary solutions. The Langmuir plots indicated that the isotherm can be used to describe sorption studies of both MO dye and Pb2+, while Temkin isotherm was not in agreement with the results. The closeness of R2 value to 1 indicated that the data obtained fits Langmuir Isotherm model of monolayer adsorption kinetics. It was concluded that the Fe2O3-BC nano-composite has a series of distinct homogeneous sites available for binding the MO anions in solution. Therefore, the use of Fe2O3-BC nano-composite for small scale community water purification is a novel cause.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the Adsorption Properties of an Engineered Biochar (Fe2o3-Bc) Nano-Composite in Binary and Ternary Aqueous Solutions\",\"authors\":\"Tobias T. Shumba, Bridgette V. Musamirapamwe\",\"doi\":\"10.13005/msri/190207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The binary and ternary adsorptions of Pb (II), methyl orange (MO) and brilliant blue (BB) on engineered biochar (Fe2O3-BC) nano-composite using pyrolysis and microwave activation were investigated in this work. Batch experiments were conducted to investigate the capacity of Fe2O3BC to remove MO, Pb and BB in binary and ternary aqueous solutions. MO removal was higher in MO-Pb binary solution than in ternary MO solution. A large amount of adsorbent dosage, high concentration and longer time were witnessed to achieve maximum removals in ternary solutions as compared to binary solutions. The Langmuir plots indicated that the isotherm can be used to describe sorption studies of both MO dye and Pb2+, while Temkin isotherm was not in agreement with the results. The closeness of R2 value to 1 indicated that the data obtained fits Langmuir Isotherm model of monolayer adsorption kinetics. It was concluded that the Fe2O3-BC nano-composite has a series of distinct homogeneous sites available for binding the MO anions in solution. Therefore, the use of Fe2O3-BC nano-composite for small scale community water purification is a novel cause.\",\"PeriodicalId\":18247,\"journal\":{\"name\":\"Material Science Research India\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science Research India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/msri/190207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/msri/190207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation on the Adsorption Properties of an Engineered Biochar (Fe2o3-Bc) Nano-Composite in Binary and Ternary Aqueous Solutions
The binary and ternary adsorptions of Pb (II), methyl orange (MO) and brilliant blue (BB) on engineered biochar (Fe2O3-BC) nano-composite using pyrolysis and microwave activation were investigated in this work. Batch experiments were conducted to investigate the capacity of Fe2O3BC to remove MO, Pb and BB in binary and ternary aqueous solutions. MO removal was higher in MO-Pb binary solution than in ternary MO solution. A large amount of adsorbent dosage, high concentration and longer time were witnessed to achieve maximum removals in ternary solutions as compared to binary solutions. The Langmuir plots indicated that the isotherm can be used to describe sorption studies of both MO dye and Pb2+, while Temkin isotherm was not in agreement with the results. The closeness of R2 value to 1 indicated that the data obtained fits Langmuir Isotherm model of monolayer adsorption kinetics. It was concluded that the Fe2O3-BC nano-composite has a series of distinct homogeneous sites available for binding the MO anions in solution. Therefore, the use of Fe2O3-BC nano-composite for small scale community water purification is a novel cause.