{"title":"小鼠视网膜底物脱氢酶2型(RALDH2)的动力学分析","authors":"Isabelle Gagnon , Gregg Duester , Pangala V. Bhat","doi":"10.1016/S0167-4838(02)00213-3","DOIUrl":null,"url":null,"abstract":"<div><p>Retinal dehydrogenase (RALDH) isozymes catalyze the terminal oxidation of retinol into retinoic acid (RA) that is essential for embryogenesis and tissue differentiation. To understand the role of mouse type 2 RALDH in synthesizing the ligands (all-<em>trans</em> and 9-<em>cis</em> RA) needed to bind and activate nuclear RA receptors, we determined the detailed kinetic properties of RALDH2 for various retinal substrates. Purified recombinant RALDH2 showed a pH optimum of 9.0 for all-<em>trans</em> retinal oxidation. The activity of the enzyme was lower at 37°C compared to 25°C. The efficiency of conversion of all-<em>trans</em> retinal to RA was 2- and 5-fold higher than 13-<em>cis</em> and 9-<em>cis</em> retinal, respectively. The <em>K</em><sub>m</sub> for all-<em>trans</em> and 13-<em>cis</em> retinal were similar (0.66 and 0.62 μM, respectively). However, the <em>K</em><sub>m</sub> of RALDH2 for 9-<em>cis</em> retinal substrate (2.25 μM) was 3-fold higher compared to all-<em>trans</em> and 13-<em>cis</em> retinal substrates. Among several reagents tested for their ability to either inhibit or activate RALDH2, citral and <em>para</em>-hydroxymercuribenzoic acid (p-HMB) inhibited and MgCl<sub>2</sub> activated the reaction. Comparison of the kinetic properties of RALDH2 for retinal substrates and its activity towards various reagents with those of previously reported rat kidney RALDH1 and human liver aldehyde dehydrogenase-1 showed distinct differences. Since RALDH2 has low <em>K</em><sub>m</sub> and high catalytic efficiency for all-<em>trans</em> retinal, it may likely be involved in the production of all-<em>trans</em> RA in vivo.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":"1596 1","pages":"Pages 156-162"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00213-3","citationCount":"66","resultStr":"{\"title\":\"Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates\",\"authors\":\"Isabelle Gagnon , Gregg Duester , Pangala V. Bhat\",\"doi\":\"10.1016/S0167-4838(02)00213-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Retinal dehydrogenase (RALDH) isozymes catalyze the terminal oxidation of retinol into retinoic acid (RA) that is essential for embryogenesis and tissue differentiation. To understand the role of mouse type 2 RALDH in synthesizing the ligands (all-<em>trans</em> and 9-<em>cis</em> RA) needed to bind and activate nuclear RA receptors, we determined the detailed kinetic properties of RALDH2 for various retinal substrates. Purified recombinant RALDH2 showed a pH optimum of 9.0 for all-<em>trans</em> retinal oxidation. The activity of the enzyme was lower at 37°C compared to 25°C. The efficiency of conversion of all-<em>trans</em> retinal to RA was 2- and 5-fold higher than 13-<em>cis</em> and 9-<em>cis</em> retinal, respectively. The <em>K</em><sub>m</sub> for all-<em>trans</em> and 13-<em>cis</em> retinal were similar (0.66 and 0.62 μM, respectively). However, the <em>K</em><sub>m</sub> of RALDH2 for 9-<em>cis</em> retinal substrate (2.25 μM) was 3-fold higher compared to all-<em>trans</em> and 13-<em>cis</em> retinal substrates. Among several reagents tested for their ability to either inhibit or activate RALDH2, citral and <em>para</em>-hydroxymercuribenzoic acid (p-HMB) inhibited and MgCl<sub>2</sub> activated the reaction. Comparison of the kinetic properties of RALDH2 for retinal substrates and its activity towards various reagents with those of previously reported rat kidney RALDH1 and human liver aldehyde dehydrogenase-1 showed distinct differences. Since RALDH2 has low <em>K</em><sub>m</sub> and high catalytic efficiency for all-<em>trans</em> retinal, it may likely be involved in the production of all-<em>trans</em> RA in vivo.</p></div>\",\"PeriodicalId\":100166,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"volume\":\"1596 1\",\"pages\":\"Pages 156-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00213-3\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167483802002133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167483802002133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates
Retinal dehydrogenase (RALDH) isozymes catalyze the terminal oxidation of retinol into retinoic acid (RA) that is essential for embryogenesis and tissue differentiation. To understand the role of mouse type 2 RALDH in synthesizing the ligands (all-trans and 9-cis RA) needed to bind and activate nuclear RA receptors, we determined the detailed kinetic properties of RALDH2 for various retinal substrates. Purified recombinant RALDH2 showed a pH optimum of 9.0 for all-trans retinal oxidation. The activity of the enzyme was lower at 37°C compared to 25°C. The efficiency of conversion of all-trans retinal to RA was 2- and 5-fold higher than 13-cis and 9-cis retinal, respectively. The Km for all-trans and 13-cis retinal were similar (0.66 and 0.62 μM, respectively). However, the Km of RALDH2 for 9-cis retinal substrate (2.25 μM) was 3-fold higher compared to all-trans and 13-cis retinal substrates. Among several reagents tested for their ability to either inhibit or activate RALDH2, citral and para-hydroxymercuribenzoic acid (p-HMB) inhibited and MgCl2 activated the reaction. Comparison of the kinetic properties of RALDH2 for retinal substrates and its activity towards various reagents with those of previously reported rat kidney RALDH1 and human liver aldehyde dehydrogenase-1 showed distinct differences. Since RALDH2 has low Km and high catalytic efficiency for all-trans retinal, it may likely be involved in the production of all-trans RA in vivo.