风险降低与均方差分析:实证研究

J. Fletcher
{"title":"风险降低与均方差分析:实证研究","authors":"J. Fletcher","doi":"10.1111/j.1468-5957.2009.02143.x","DOIUrl":null,"url":null,"abstract":"I examine the performance of global minimum variance (GMV) and minimum tracking error variance (TEV) portfolios in UK stock returns using different models of the covariance matrix. I find that both GMV and TEV portfolios deliver portfolio risk reduction benefits in terms of significantly lower volatility and tracking error volatility relative to passive benchmarks for every model of the covariance matrix used. However, the GMV (TEV) portfolios do not provide significantly superior Sharpe (1966) (adjusted Sharpe) performance relative to passive benchmarks except for the restricted GMV portfolios. I find that a number of alternative covariance matrix models can improve the performance of the restricted TEV portfolio formed using the sample covariance matrix but not the restricted GMV portfolio. I also find that simpler covariance matrix models perform as well as the more sophisticated models. Copyright (c) 2009 The Author Journal compilation (c) 2009 Blackwell Publishing Ltd.","PeriodicalId":23644,"journal":{"name":"Wiley-Blackwell: Journal of Business Finance & Accounting","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Risk Reduction and Mean-Variance Analysis: An Empirical Investigation\",\"authors\":\"J. Fletcher\",\"doi\":\"10.1111/j.1468-5957.2009.02143.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I examine the performance of global minimum variance (GMV) and minimum tracking error variance (TEV) portfolios in UK stock returns using different models of the covariance matrix. I find that both GMV and TEV portfolios deliver portfolio risk reduction benefits in terms of significantly lower volatility and tracking error volatility relative to passive benchmarks for every model of the covariance matrix used. However, the GMV (TEV) portfolios do not provide significantly superior Sharpe (1966) (adjusted Sharpe) performance relative to passive benchmarks except for the restricted GMV portfolios. I find that a number of alternative covariance matrix models can improve the performance of the restricted TEV portfolio formed using the sample covariance matrix but not the restricted GMV portfolio. I also find that simpler covariance matrix models perform as well as the more sophisticated models. Copyright (c) 2009 The Author Journal compilation (c) 2009 Blackwell Publishing Ltd.\",\"PeriodicalId\":23644,\"journal\":{\"name\":\"Wiley-Blackwell: Journal of Business Finance & Accounting\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley-Blackwell: Journal of Business Finance & Accounting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1468-5957.2009.02143.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley-Blackwell: Journal of Business Finance & Accounting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1468-5957.2009.02143.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我使用协方差矩阵的不同模型检验了全球最小方差(GMV)和最小跟踪误差方差(TEV)投资组合在英国股票回报中的表现。我发现GMV和TEV投资组合都提供了投资组合风险降低的好处,因为相对于所使用的协方差矩阵的每个模型的被动基准,GMV和TEV投资组合的波动性和跟踪误差波动性显著降低。然而,GMV (TEV)投资组合并没有提供明显优于被动基准夏普(1966)(调整夏普)的表现,除了受限制的GMV投资组合。我发现一些可选的协方差矩阵模型可以改善使用样本协方差矩阵而不是限制性GMV组合形成的受限TEV组合的性能。我还发现,更简单的协方差矩阵模型表现得和更复杂的模型一样好。版权所有(c) 2009作者期刊编辑(c) 2009布莱克威尔出版有限公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Risk Reduction and Mean-Variance Analysis: An Empirical Investigation
I examine the performance of global minimum variance (GMV) and minimum tracking error variance (TEV) portfolios in UK stock returns using different models of the covariance matrix. I find that both GMV and TEV portfolios deliver portfolio risk reduction benefits in terms of significantly lower volatility and tracking error volatility relative to passive benchmarks for every model of the covariance matrix used. However, the GMV (TEV) portfolios do not provide significantly superior Sharpe (1966) (adjusted Sharpe) performance relative to passive benchmarks except for the restricted GMV portfolios. I find that a number of alternative covariance matrix models can improve the performance of the restricted TEV portfolio formed using the sample covariance matrix but not the restricted GMV portfolio. I also find that simpler covariance matrix models perform as well as the more sophisticated models. Copyright (c) 2009 The Author Journal compilation (c) 2009 Blackwell Publishing Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sustainability of the Accounting and Finance Academic Profession: Students’ and Supervisors’ Views About the Phd Supervision Process Transforming Accounting Curricula to Enhance Integrative Learning IASB's Independence in the Due Process: An Examination of Interest Groups’ Influence on the Development of IFRS 9 Structural Holes and Hedge Fund Return Comovement: Evidence from Network‐Connected Stock Hedge Funds in China The Pricing of Accruals Quality in Credit Default Swap Spreads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1