使用基于模拟的优化解决缓冲区分配问题

ORiON Pub Date : 2021-02-01 DOI:10.5784/36-2-684
J. Joubert, D. Kotzé
{"title":"使用基于模拟的优化解决缓冲区分配问题","authors":"J. Joubert, D. Kotzé","doi":"10.5784/36-2-684","DOIUrl":null,"url":null,"abstract":"In production lines, buffers function as a means to decouple stations, which reduce the effect that station failures and varying process times have on the complete line’s throughput. However, adding larger buffers can be costly, for example, in the automotive industry where it results in increased working capital. This manuscript addresses the buffer allocation problem (BAP), seeking the smallest total buffer size while meeting a prescribed throughput by employing a simulation-based optimisation approach. A Tabu Search algorithm searches the solution space for the optimal buffer configuration while a discrete event simulation model evaluates each configuration, accounting for the machine (un)reliability. Since the multiple simulations add a sizeable computational burden, our approach introduces a novel neighbourhood search mechanism, which borrows from the Theory of Constrains. Solving test sets available in the literature suggest that this approach is 18 times faster than prior Adaptive Tabu Search approaches for small problems, and more than five times faster for medium-sized problems.","PeriodicalId":30587,"journal":{"name":"ORiON","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solving the buffer allocation problem using simulation-based optimisation\",\"authors\":\"J. Joubert, D. Kotzé\",\"doi\":\"10.5784/36-2-684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In production lines, buffers function as a means to decouple stations, which reduce the effect that station failures and varying process times have on the complete line’s throughput. However, adding larger buffers can be costly, for example, in the automotive industry where it results in increased working capital. This manuscript addresses the buffer allocation problem (BAP), seeking the smallest total buffer size while meeting a prescribed throughput by employing a simulation-based optimisation approach. A Tabu Search algorithm searches the solution space for the optimal buffer configuration while a discrete event simulation model evaluates each configuration, accounting for the machine (un)reliability. Since the multiple simulations add a sizeable computational burden, our approach introduces a novel neighbourhood search mechanism, which borrows from the Theory of Constrains. Solving test sets available in the literature suggest that this approach is 18 times faster than prior Adaptive Tabu Search approaches for small problems, and more than five times faster for medium-sized problems.\",\"PeriodicalId\":30587,\"journal\":{\"name\":\"ORiON\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ORiON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5784/36-2-684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ORiON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5784/36-2-684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在生产线中,缓冲器的作用是将工位分离,从而减少工位故障和不同的工艺时间对整条生产线的吞吐量的影响。然而,增加更大的缓冲可能是昂贵的,例如,在汽车行业,它会导致增加的营运资金。本文解决了缓冲区分配问题(BAP),寻求最小的总缓冲区大小,同时通过采用基于模拟的优化方法满足规定的吞吐量。禁忌搜索算法在解空间中搜索最优缓冲区配置,而离散事件仿真模型评估每种配置,考虑机器(非)可靠性。由于多次模拟增加了相当大的计算负担,我们的方法引入了一种新的邻域搜索机制,该机制借鉴了约束理论。解决文献中可用的测试集表明,这种方法在小问题上比以前的自适应禁忌搜索方法快18倍,在中等问题上快5倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving the buffer allocation problem using simulation-based optimisation
In production lines, buffers function as a means to decouple stations, which reduce the effect that station failures and varying process times have on the complete line’s throughput. However, adding larger buffers can be costly, for example, in the automotive industry where it results in increased working capital. This manuscript addresses the buffer allocation problem (BAP), seeking the smallest total buffer size while meeting a prescribed throughput by employing a simulation-based optimisation approach. A Tabu Search algorithm searches the solution space for the optimal buffer configuration while a discrete event simulation model evaluates each configuration, accounting for the machine (un)reliability. Since the multiple simulations add a sizeable computational burden, our approach introduces a novel neighbourhood search mechanism, which borrows from the Theory of Constrains. Solving test sets available in the literature suggest that this approach is 18 times faster than prior Adaptive Tabu Search approaches for small problems, and more than five times faster for medium-sized problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
期刊最新文献
Route overlap metrics to batch orders Anomaly detection using autoencoders with network analysis features On the calibration of stochastic volatility models to estimate the real-world measure used in option pricing Celebrating 50-years of OR in South Africa – a Bibliometric Analysis of contributions to International OR Literature Comments: Development of an early career academic supervisor in Statistics - a discussion on a guiding rubric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1