裂纹定位的机器学习方法比较

H. Hein, L. Jaanuska
{"title":"裂纹定位的机器学习方法比较","authors":"H. Hein, L. Jaanuska","doi":"10.12697/ACUTM.2019.23.13","DOIUrl":null,"url":null,"abstract":"In this paper, the Haar wavelet discrete transform, the artificial neural networks (ANNs), and the random forests (RFs) are applied to predict the location and severity of a crack in an Euler–Bernoulli cantilever subjected to the transverse free vibration. An extensive investigation into two data collection sets and machine learning methods showed that the depth of a crack is more difficult to predict than its location. The data set of eight natural frequency parameters produces more accurate predictions on the crack depth; meanwhile, the data set of eight Haar wavelet coefficients produces more precise predictions on the crack location. Furthermore, the analysis of the results showed that the ensemble of 50 ANN trained by Bayesian regularization and Levenberg–Marquardt algorithms slightly outperforms RF.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"136 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of machine learning methods for crack localization\",\"authors\":\"H. Hein, L. Jaanuska\",\"doi\":\"10.12697/ACUTM.2019.23.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Haar wavelet discrete transform, the artificial neural networks (ANNs), and the random forests (RFs) are applied to predict the location and severity of a crack in an Euler–Bernoulli cantilever subjected to the transverse free vibration. An extensive investigation into two data collection sets and machine learning methods showed that the depth of a crack is more difficult to predict than its location. The data set of eight natural frequency parameters produces more accurate predictions on the crack depth; meanwhile, the data set of eight Haar wavelet coefficients produces more precise predictions on the crack location. Furthermore, the analysis of the results showed that the ensemble of 50 ANN trained by Bayesian regularization and Levenberg–Marquardt algorithms slightly outperforms RF.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2019.23.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2019.23.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文采用Haar小波离散变换、人工神经网络(ann)和随机森林(RFs)来预测欧拉-伯努利悬臂梁受横向自由振动时裂纹的位置和严重程度。对两种数据收集集和机器学习方法的广泛调查表明,裂缝的深度比其位置更难预测。8个固有频率参数的数据集对裂纹深度的预测更为准确;同时,由8个Haar小波系数组成的数据集对裂纹位置的预测更为精确。此外,分析结果表明,由贝叶斯正则化和Levenberg-Marquardt算法训练的50个人工神经网络的集合略优于RF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of machine learning methods for crack localization
In this paper, the Haar wavelet discrete transform, the artificial neural networks (ANNs), and the random forests (RFs) are applied to predict the location and severity of a crack in an Euler–Bernoulli cantilever subjected to the transverse free vibration. An extensive investigation into two data collection sets and machine learning methods showed that the depth of a crack is more difficult to predict than its location. The data set of eight natural frequency parameters produces more accurate predictions on the crack depth; meanwhile, the data set of eight Haar wavelet coefficients produces more precise predictions on the crack location. Furthermore, the analysis of the results showed that the ensemble of 50 ANN trained by Bayesian regularization and Levenberg–Marquardt algorithms slightly outperforms RF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
期刊最新文献
On Horadam finite operator hybrid numbers The sharp bound of the third Hankel determinant of the kth-root transformation for bounded turning functions Second cohomology group and quadratic extensions of metric Hom-Jacobi–Jordan algebras Atoms of the lattices of residuated mappings Character amenability of vector-valued algebras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1