{"title":"非阿贝尔$\\ ca $-群上的等价关系","authors":"M. Iranmanesh, M. Zareian","doi":"10.22190/fumi201225043i","DOIUrl":null,"url":null,"abstract":"A non-abelian group $G$ is called a $\\CA$-group ($\\CC$-group) if $C_G(x)$ is abelian(cyclic) for all $x\\in G\\setminus Z(G)$. We say $x\\sim y$ if and only if $C_G(x)=C_G(y)$.We denote the equivalence class including $x$ by$[x]_{\\sim}$. In this paper, we prove thatif $G$ is a $\\CA$-group and $[x]_{\\sim}=xZ(G)$, for all $x\\in G$, then $2^{r-1}\\leq|G'|\\leq 2^{r\\choose 2}$.where $\\frac {|G|}{|Z(G)|}=2^{r}, 2\\leq r$ and characterize all groups whose $[x]_{\\sim}=xZ(G)$for all $x\\in G$ and $|G|\\leq 100$. Also, we will show that if $G$ is a $\\CC$-group and $[x]_{\\sim}=xZ(G)$,for all $x \\in G$, then $G\\cong C_m\\times Q_8$ where $C_m$ is a cyclic group of odd order $m$ andif $G$ is a $\\CC$-group and $[x]_{\\sim}=x^G$, for all $x\\in G\\setminus Z(G)$, then $G\\cong Q_8$.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON SOME EQUIVALENCE RELATION ON NON-ABELIAN $\\\\CA$-GROUPS\",\"authors\":\"M. Iranmanesh, M. Zareian\",\"doi\":\"10.22190/fumi201225043i\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-abelian group $G$ is called a $\\\\CA$-group ($\\\\CC$-group) if $C_G(x)$ is abelian(cyclic) for all $x\\\\in G\\\\setminus Z(G)$. We say $x\\\\sim y$ if and only if $C_G(x)=C_G(y)$.We denote the equivalence class including $x$ by$[x]_{\\\\sim}$. In this paper, we prove thatif $G$ is a $\\\\CA$-group and $[x]_{\\\\sim}=xZ(G)$, for all $x\\\\in G$, then $2^{r-1}\\\\leq|G'|\\\\leq 2^{r\\\\choose 2}$.where $\\\\frac {|G|}{|Z(G)|}=2^{r}, 2\\\\leq r$ and characterize all groups whose $[x]_{\\\\sim}=xZ(G)$for all $x\\\\in G$ and $|G|\\\\leq 100$. Also, we will show that if $G$ is a $\\\\CC$-group and $[x]_{\\\\sim}=xZ(G)$,for all $x \\\\in G$, then $G\\\\cong C_m\\\\times Q_8$ where $C_m$ is a cyclic group of odd order $m$ andif $G$ is a $\\\\CC$-group and $[x]_{\\\\sim}=x^G$, for all $x\\\\in G\\\\setminus Z(G)$, then $G\\\\cong Q_8$.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi201225043i\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi201225043i","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON SOME EQUIVALENCE RELATION ON NON-ABELIAN $\CA$-GROUPS
A non-abelian group $G$ is called a $\CA$-group ($\CC$-group) if $C_G(x)$ is abelian(cyclic) for all $x\in G\setminus Z(G)$. We say $x\sim y$ if and only if $C_G(x)=C_G(y)$.We denote the equivalence class including $x$ by$[x]_{\sim}$. In this paper, we prove thatif $G$ is a $\CA$-group and $[x]_{\sim}=xZ(G)$, for all $x\in G$, then $2^{r-1}\leq|G'|\leq 2^{r\choose 2}$.where $\frac {|G|}{|Z(G)|}=2^{r}, 2\leq r$ and characterize all groups whose $[x]_{\sim}=xZ(G)$for all $x\in G$ and $|G|\leq 100$. Also, we will show that if $G$ is a $\CC$-group and $[x]_{\sim}=xZ(G)$,for all $x \in G$, then $G\cong C_m\times Q_8$ where $C_m$ is a cyclic group of odd order $m$ andif $G$ is a $\CC$-group and $[x]_{\sim}=x^G$, for all $x\in G\setminus Z(G)$, then $G\cong Q_8$.