{"title":"瞬态和稳态流动的能量分离","authors":"M. Burazer","doi":"10.2298/TAM171130006B","DOIUrl":null,"url":null,"abstract":". Energy separation is a spontaneous energy redistribution within a fluid flow. As a consequence, there are places with higher and lower val- ues of total temperature in the fluid flow. It is characteristic for many flow geometries. This paper deals with the energy separation in a cylinder wake. Two flow conditions are being considered–transient and steady-state flow in the wake. Two different solvers from the open source package OpenFOAM are used in order to capture the phenomenon of energy separation. One of these solvers is modified for the purpose of calculation in a particular case of the vortex street flow. The energy equation based on the internal energy present in this solver is replaced by the energy equation written in the form of a total enthalpy. The other solver has been previously tested in the vortex tube flow, and can also capture the energy separation in the steady-state wake flow of the cylinder. In both cylinder wake flow conditions, a two-dimensional computational domain is used. Standard 𝑘 − 𝜀 model is used for computations. It is proved that OpenFOAM is capable of capturing the energy separation phenomenon in a proper way in both of the wake flow cases. Good agreement between the experimental results and the ones from computations is obtained in the case of steady-state flow in the wake. Previous research findings are also confirmed in the case of vortex street flow.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy separation in transient and steady-state flow across the cylinder\",\"authors\":\"M. Burazer\",\"doi\":\"10.2298/TAM171130006B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Energy separation is a spontaneous energy redistribution within a fluid flow. As a consequence, there are places with higher and lower val- ues of total temperature in the fluid flow. It is characteristic for many flow geometries. This paper deals with the energy separation in a cylinder wake. Two flow conditions are being considered–transient and steady-state flow in the wake. Two different solvers from the open source package OpenFOAM are used in order to capture the phenomenon of energy separation. One of these solvers is modified for the purpose of calculation in a particular case of the vortex street flow. The energy equation based on the internal energy present in this solver is replaced by the energy equation written in the form of a total enthalpy. The other solver has been previously tested in the vortex tube flow, and can also capture the energy separation in the steady-state wake flow of the cylinder. In both cylinder wake flow conditions, a two-dimensional computational domain is used. Standard 𝑘 − 𝜀 model is used for computations. It is proved that OpenFOAM is capable of capturing the energy separation phenomenon in a proper way in both of the wake flow cases. Good agreement between the experimental results and the ones from computations is obtained in the case of steady-state flow in the wake. Previous research findings are also confirmed in the case of vortex street flow.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM171130006B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM171130006B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Energy separation in transient and steady-state flow across the cylinder
. Energy separation is a spontaneous energy redistribution within a fluid flow. As a consequence, there are places with higher and lower val- ues of total temperature in the fluid flow. It is characteristic for many flow geometries. This paper deals with the energy separation in a cylinder wake. Two flow conditions are being considered–transient and steady-state flow in the wake. Two different solvers from the open source package OpenFOAM are used in order to capture the phenomenon of energy separation. One of these solvers is modified for the purpose of calculation in a particular case of the vortex street flow. The energy equation based on the internal energy present in this solver is replaced by the energy equation written in the form of a total enthalpy. The other solver has been previously tested in the vortex tube flow, and can also capture the energy separation in the steady-state wake flow of the cylinder. In both cylinder wake flow conditions, a two-dimensional computational domain is used. Standard 𝑘 − 𝜀 model is used for computations. It is proved that OpenFOAM is capable of capturing the energy separation phenomenon in a proper way in both of the wake flow cases. Good agreement between the experimental results and the ones from computations is obtained in the case of steady-state flow in the wake. Previous research findings are also confirmed in the case of vortex street flow.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.