Pr1−xCaxMnO3的轨道序相变

B. Kressdorf, T. Meyer, M. Ten Brink, C. Seick, S. Melles, N. Ottinger, T. Titze, H. Meer, A. Weisser, J. Hoffmann, S. Mathias, H. Ulrichs, D. Steil, M. Seibt, P. Blöchl, C. Jooss
{"title":"Pr1−xCaxMnO3的轨道序相变","authors":"B. Kressdorf, T. Meyer, M. Ten Brink, C. Seick, S. Melles, N. Ottinger, T. Titze, H. Meer, A. Weisser, J. Hoffmann, S. Mathias, H. Ulrichs, D. Steil, M. Seibt, P. Blöchl, C. Jooss","doi":"10.1103/PhysRevB.103.235122","DOIUrl":null,"url":null,"abstract":"A new phase diagram of $Pr_{1-x}Ca_xMnO_3$ for x $\\le$ 0.3 is derived that suggests a necessary revaluation of the phase diagram of other manganites in that doping region. Rather than an orbital ordered phase reaching up to high temperatures 850 K for x=0.1 and 950 K for x=0, we propose a loss of spontaneous order already near room temperature. Above this temperature, the phase is characterized by a finite orbital polarization and octahedral tilt pattern. The tilt pattern couples to the Jahn-Teller distortion and thus induces a remaining orbital order, which persists up to high temperatures, where the tilt order is lost as well. This explains the experimental observation of orbital order up to high temperatures. Anomalies at a temperature 220-260 K have been observed in epitaxial thin films of doping x=0.1 for photovoltaic effect, electric transport, magnetisation, optical and ultrafast transient pump probe studies. The onset of the polaron photovoltaic effect and the increase of the hot polaron relaxation time below $T_{OO}$ suggest a change in the orbital order. Finite-temperature simulations based on a tight-binding model with carefully adjusted parameters from first-principles calculations exhibit an orbital-order phase transition at $T_{OO} \\approx$ 300 K for x=0.1. This is consistent with the experimental observation of a change in temperature dependent lattice parameter for bulk samples of the same doping at 300 K for x=0.1 and 350 K for x=0, typical for a second order phase transition.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Orbital-order phase transition in \\nPr1−xCaxMnO3\\n probed by photovoltaics\",\"authors\":\"B. Kressdorf, T. Meyer, M. Ten Brink, C. Seick, S. Melles, N. Ottinger, T. Titze, H. Meer, A. Weisser, J. Hoffmann, S. Mathias, H. Ulrichs, D. Steil, M. Seibt, P. Blöchl, C. Jooss\",\"doi\":\"10.1103/PhysRevB.103.235122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new phase diagram of $Pr_{1-x}Ca_xMnO_3$ for x $\\\\le$ 0.3 is derived that suggests a necessary revaluation of the phase diagram of other manganites in that doping region. Rather than an orbital ordered phase reaching up to high temperatures 850 K for x=0.1 and 950 K for x=0, we propose a loss of spontaneous order already near room temperature. Above this temperature, the phase is characterized by a finite orbital polarization and octahedral tilt pattern. The tilt pattern couples to the Jahn-Teller distortion and thus induces a remaining orbital order, which persists up to high temperatures, where the tilt order is lost as well. This explains the experimental observation of orbital order up to high temperatures. Anomalies at a temperature 220-260 K have been observed in epitaxial thin films of doping x=0.1 for photovoltaic effect, electric transport, magnetisation, optical and ultrafast transient pump probe studies. The onset of the polaron photovoltaic effect and the increase of the hot polaron relaxation time below $T_{OO}$ suggest a change in the orbital order. Finite-temperature simulations based on a tight-binding model with carefully adjusted parameters from first-principles calculations exhibit an orbital-order phase transition at $T_{OO} \\\\approx$ 300 K for x=0.1. This is consistent with the experimental observation of a change in temperature dependent lattice parameter for bulk samples of the same doping at 300 K for x=0.1 and 350 K for x=0, typical for a second order phase transition.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.103.235122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.235122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

得到了x $\le$ 0.3的新相图$Pr_{1-x}Ca_xMnO_3$,这表明有必要对该掺杂区域内其他锰的相图进行重新评估。而不是轨道有序相达到高温850 K, x=0.1和950 K, x=0,我们提出自发有序的损失已经接近室温。在此温度以上,相位的特征是有限轨道极化和八面体倾斜模式。倾斜模式与扬-泰勒扭曲耦合,从而引起剩余的轨道顺序,这种顺序一直持续到高温,在高温下倾斜顺序也会丢失。这解释了在高温下轨道有序的实验观察。在220-260 K温度下,掺杂x=0.1的外延薄膜在光伏效应、电输运、磁化、光学和超快瞬态泵探针研究中发现了异常现象。极化子光伏效应的发生和热极化子弛豫时间在$T_{OO}$以下的增加表明轨道顺序发生了变化。基于紧密结合模型的有限温度模拟,通过第一原理计算仔细调整参数,显示出在$T_{OO} \approx$ 300 K时x=0.1的轨道阶相变。这与实验观察到的相同掺杂的大块样品在300 K时(x=0.1)和350 K时(x=0)的晶格参数随温度变化的变化是一致的,这是典型的二级相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Orbital-order phase transition in Pr1−xCaxMnO3 probed by photovoltaics
A new phase diagram of $Pr_{1-x}Ca_xMnO_3$ for x $\le$ 0.3 is derived that suggests a necessary revaluation of the phase diagram of other manganites in that doping region. Rather than an orbital ordered phase reaching up to high temperatures 850 K for x=0.1 and 950 K for x=0, we propose a loss of spontaneous order already near room temperature. Above this temperature, the phase is characterized by a finite orbital polarization and octahedral tilt pattern. The tilt pattern couples to the Jahn-Teller distortion and thus induces a remaining orbital order, which persists up to high temperatures, where the tilt order is lost as well. This explains the experimental observation of orbital order up to high temperatures. Anomalies at a temperature 220-260 K have been observed in epitaxial thin films of doping x=0.1 for photovoltaic effect, electric transport, magnetisation, optical and ultrafast transient pump probe studies. The onset of the polaron photovoltaic effect and the increase of the hot polaron relaxation time below $T_{OO}$ suggest a change in the orbital order. Finite-temperature simulations based on a tight-binding model with carefully adjusted parameters from first-principles calculations exhibit an orbital-order phase transition at $T_{OO} \approx$ 300 K for x=0.1. This is consistent with the experimental observation of a change in temperature dependent lattice parameter for bulk samples of the same doping at 300 K for x=0.1 and 350 K for x=0, typical for a second order phase transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electronic and magnetic properties of iridium ilmenites $A$IrO$_3$ ($A=$ Mg, Zn, and Mn). Landau-Fermi liquids in disguise Diffusion in the Anderson model in higher dimensions Discovery of an ultra-quantum spin liquid Topological excitations in quasi two-dimensional quantum magnets with weak interlayer interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1