无人机辅助移动边缘计算系统联合资源分配与轨迹设计

Jiequ Ji, K. Zhu, Changyan Yi, Ran Wang, D. Niyato
{"title":"无人机辅助移动边缘计算系统联合资源分配与轨迹设计","authors":"Jiequ Ji, K. Zhu, Changyan Yi, Ran Wang, D. Niyato","doi":"10.1109/GLOBECOM42002.2020.9348121","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system is an appealing concept, where a fixed-wing UAV equipped with computing resources is used to help local resource-limited user devices (UDs) compute their tasks. In this paper, each UD has separable computing tasks to complete, which can be divided into two parts: one portion is processed locally and the other part is offloaded to the UAV. The UAV moves around above UDs and provides computing service in an orthogonal frequency division multiple access (OFDMA) manner. This paper aims to minimize the weighted sum energy consumption of the UAV and UDs by jointly optimizing resource allocation and UAV trajectory. The resulted optimization problem is nonconvex and challenging to solve directly. With that in mind, we develop an iterative algorithm for solving this problem based on the block coordinate descent method, which iteratively optimizes resource allocation variables and UAV trajectory variables till convergence. Simulation results show significant energy saving of our proposed solution compared to the benchmarks.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"17 2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Joint Resource Allocation and Trajectory Design for UAV-assisted Mobile Edge Computing Systems\",\"authors\":\"Jiequ Ji, K. Zhu, Changyan Yi, Ran Wang, D. Niyato\",\"doi\":\"10.1109/GLOBECOM42002.2020.9348121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system is an appealing concept, where a fixed-wing UAV equipped with computing resources is used to help local resource-limited user devices (UDs) compute their tasks. In this paper, each UD has separable computing tasks to complete, which can be divided into two parts: one portion is processed locally and the other part is offloaded to the UAV. The UAV moves around above UDs and provides computing service in an orthogonal frequency division multiple access (OFDMA) manner. This paper aims to minimize the weighted sum energy consumption of the UAV and UDs by jointly optimizing resource allocation and UAV trajectory. The resulted optimization problem is nonconvex and challenging to solve directly. With that in mind, we develop an iterative algorithm for solving this problem based on the block coordinate descent method, which iteratively optimizes resource allocation variables and UAV trajectory variables till convergence. Simulation results show significant energy saving of our proposed solution compared to the benchmarks.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"17 2 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9348121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9348121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无人机(UAV)辅助移动边缘计算(MEC)系统是一个吸引人的概念,其中配备计算资源的固定翼无人机用于帮助本地资源有限的用户设备(UDs)计算其任务。在本文中,每个UD都有可分离的计算任务要完成,可以分为两部分:一部分在本地处理,另一部分卸载给无人机。无人机在UDs上方移动,以正交频分多址(OFDMA)方式提供计算服务。本文旨在通过联合优化资源配置和无人机轨迹,使无人机和UDs的加权总能耗最小。所得到的优化问题是非凸的,很难直接求解。为此,提出了一种基于块坐标下降法的迭代求解算法,迭代优化资源分配变量和无人机轨迹变量,直至收敛。仿真结果表明,与基准测试相比,我们提出的解决方案具有显著的节能效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Resource Allocation and Trajectory Design for UAV-assisted Mobile Edge Computing Systems
Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system is an appealing concept, where a fixed-wing UAV equipped with computing resources is used to help local resource-limited user devices (UDs) compute their tasks. In this paper, each UD has separable computing tasks to complete, which can be divided into two parts: one portion is processed locally and the other part is offloaded to the UAV. The UAV moves around above UDs and provides computing service in an orthogonal frequency division multiple access (OFDMA) manner. This paper aims to minimize the weighted sum energy consumption of the UAV and UDs by jointly optimizing resource allocation and UAV trajectory. The resulted optimization problem is nonconvex and challenging to solve directly. With that in mind, we develop an iterative algorithm for solving this problem based on the block coordinate descent method, which iteratively optimizes resource allocation variables and UAV trajectory variables till convergence. Simulation results show significant energy saving of our proposed solution compared to the benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1