基于对角劈环谐振器的高效宽带传输型偏振变换器的设计与实现

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy Progress in Electromagnetics Research-Pier Pub Date : 2018-01-01 DOI:10.2528/PIER17110604
Rui Zhao, Haiyan Chen, Linbo Zhang, Fengxia Li, P. Zhou, Jianliang Xie, Longjiang Deng
{"title":"基于对角劈环谐振器的高效宽带传输型偏振变换器的设计与实现","authors":"Rui Zhao, Haiyan Chen, Linbo Zhang, Fengxia Li, P. Zhou, Jianliang Xie, Longjiang Deng","doi":"10.2528/PIER17110604","DOIUrl":null,"url":null,"abstract":"In this paper, the design and implementation of a three-layer linear polarization converter having broadband and asymmetric transmission (AT) properties is demonstrated. A 3.2 mm thick transmission-type polarization converter with two separate operating frequency bands is obtained with a cut-wire sandwiched by two layers of diagonal split-ring resonator (DSRR). The asymmetric transmission property can be realized by rotating the upper and lower DSRR dislocation, and its physical mechanism can be explicated by the Fabry-Pérot-like interference effect. Experimental results are presented and compared to numerical simulations, and they demonstrate that the proposed polarization converter has a significantly polarization conversion ratio over 0.8 in frequency bandwidths 8–11 GHz and 17–21 GHz for the forward and backward incidences. The proposed polarization converter has a great potential to be used as an asymmetric transmission radome or diode-like device in microwave domain.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"90 1","pages":"1-10"},"PeriodicalIF":6.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design and Implementation of High Efficiency and Broadband Transmission-Type Polarization Converter Based on Diagonal Split-Ring Resonator\",\"authors\":\"Rui Zhao, Haiyan Chen, Linbo Zhang, Fengxia Li, P. Zhou, Jianliang Xie, Longjiang Deng\",\"doi\":\"10.2528/PIER17110604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the design and implementation of a three-layer linear polarization converter having broadband and asymmetric transmission (AT) properties is demonstrated. A 3.2 mm thick transmission-type polarization converter with two separate operating frequency bands is obtained with a cut-wire sandwiched by two layers of diagonal split-ring resonator (DSRR). The asymmetric transmission property can be realized by rotating the upper and lower DSRR dislocation, and its physical mechanism can be explicated by the Fabry-Pérot-like interference effect. Experimental results are presented and compared to numerical simulations, and they demonstrate that the proposed polarization converter has a significantly polarization conversion ratio over 0.8 in frequency bandwidths 8–11 GHz and 17–21 GHz for the forward and backward incidences. The proposed polarization converter has a great potential to be used as an asymmetric transmission radome or diode-like device in microwave domain.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"90 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER17110604\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER17110604","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

摘要

本文演示了一种具有宽带和非对称传输特性的三层线性偏振变换器的设计和实现。采用两层对角分环谐振器(DSRR)夹层导线,得到了一个厚3.2 mm、工作频带独立的透射型偏振变换器。通过旋转上下DSRR位错可以实现非对称传输特性,其物理机制可以用类似fabry - psamrot的干涉效应来解释。实验结果表明,在8-11 GHz和17-21 GHz频段,极化变换器的正向和反向入射频率的极化转换率均在0.8以上。所提出的极化变换器在微波领域具有作为非对称传输天线罩或类二极管器件的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Implementation of High Efficiency and Broadband Transmission-Type Polarization Converter Based on Diagonal Split-Ring Resonator
In this paper, the design and implementation of a three-layer linear polarization converter having broadband and asymmetric transmission (AT) properties is demonstrated. A 3.2 mm thick transmission-type polarization converter with two separate operating frequency bands is obtained with a cut-wire sandwiched by two layers of diagonal split-ring resonator (DSRR). The asymmetric transmission property can be realized by rotating the upper and lower DSRR dislocation, and its physical mechanism can be explicated by the Fabry-Pérot-like interference effect. Experimental results are presented and compared to numerical simulations, and they demonstrate that the proposed polarization converter has a significantly polarization conversion ratio over 0.8 in frequency bandwidths 8–11 GHz and 17–21 GHz for the forward and backward incidences. The proposed polarization converter has a great potential to be used as an asymmetric transmission radome or diode-like device in microwave domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
期刊最新文献
L-BAND RADAR SCATTERING AND SOIL MOISTURE RETRIEVAL OF WHEAT, CANOLA AND PASTURE FIELDS FOR SMAP ACTIVE ALGORITHMS DESIGNING NANOINCLUSIONS FOR QUANTUM SENSING BASED ON ELECTROMAGNETIC SCATTERING FORMALISM (INVITED PAPER) A FINE SCALE PARTIALLY COHERENT PATCH MODEL INCLUDING TOPOGRAPHICAL EFFECTS FOR GNSS-R DDM SIMULATIONS Directional Polaritonic Excitation of Circular, Huygens and Janus Dipoles in Graphene-Hexagonal Boron Nitride Heterostructures HIGH EFFICIENCY MULTI-FUNCTIONAL ALL-OPTICAL LOGIC GATES BASED ON MIM PLASMONIC WAVEGUIDE STRUCTURE WITH THE KERR-TYPE NONLINEAR NANO-RING RESONATORS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1