利用随机神经网络对齐蛋白质-蛋白质相互作用网络

Hang T. T. Phan, M. Sternberg, E. Gelenbe
{"title":"利用随机神经网络对齐蛋白质-蛋白质相互作用网络","authors":"Hang T. T. Phan, M. Sternberg, E. Gelenbe","doi":"10.1109/BIBM.2012.6392664","DOIUrl":null,"url":null,"abstract":"We have developed RNNI, a global alignment method for protein-protein interaction networks between species, using a random neural network model (RNN) tailored for the alignment problem. The benchmark of the method in comparison with other available alignment approaches was performed using a range of measurements. The alignment results of the human and yeast pair showed that RNNI is capable of generating alignments with large conserved networks with functionally-related protein pairs while maintaining the closeness to the naive- sequence homology approach (BLAST).","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Aligning protein-protein interaction networks using random neural networks\",\"authors\":\"Hang T. T. Phan, M. Sternberg, E. Gelenbe\",\"doi\":\"10.1109/BIBM.2012.6392664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed RNNI, a global alignment method for protein-protein interaction networks between species, using a random neural network model (RNN) tailored for the alignment problem. The benchmark of the method in comparison with other available alignment approaches was performed using a range of measurements. The alignment results of the human and yeast pair showed that RNNI is capable of generating alignments with large conserved networks with functionally-related protein pairs while maintaining the closeness to the naive- sequence homology approach (BLAST).\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2012.6392664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们开发了RNNI,一种物种之间蛋白质-蛋白质相互作用网络的全局比对方法,使用针对比对问题量身定制的随机神经网络模型(RNN)。该方法的基准与其他可用的对准方法进行了比较,使用一系列的测量。人类和酵母对的比对结果表明,RNNI能够产生与功能相关蛋白对的大保守网络的比对,同时保持与原始序列同源方法(BLAST)的接近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aligning protein-protein interaction networks using random neural networks
We have developed RNNI, a global alignment method for protein-protein interaction networks between species, using a random neural network model (RNN) tailored for the alignment problem. The benchmark of the method in comparison with other available alignment approaches was performed using a range of measurements. The alignment results of the human and yeast pair showed that RNNI is capable of generating alignments with large conserved networks with functionally-related protein pairs while maintaining the closeness to the naive- sequence homology approach (BLAST).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1