基于C4.5算法的血栓性胶原蛋白疾病分类

S. Soliman, Safia Abbas, A. M. Salem
{"title":"基于C4.5算法的血栓性胶原蛋白疾病分类","authors":"S. Soliman, Safia Abbas, A. M. Salem","doi":"10.1109/INTELCIS.2015.7397209","DOIUrl":null,"url":null,"abstract":"Recently, collagen diseases propagated due to many factors such as pressure and pollution. Thrombosis is one of the most famous collagen diseases that obstruct the blood flow causing vital complications for crucial parts of the circulatory system. Such diseases cause a high risk for the doctors due to the huge number of the laboratory examinations and the efforts to diagnosis. Accordingly, this paper implements C4.5 algorithm, as one of the most famous data mining techniques, on real thrombosis dataset. The dataset was collected from Chiba University as a challenging dataset for thrombosis diagnosis. The results show that the C4.5 could diagnose the thrombosis degree with accuracy 98.4%.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"40 1","pages":"131-136"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classification of thrombosis collagen diseases based on C4.5 algorithm\",\"authors\":\"S. Soliman, Safia Abbas, A. M. Salem\",\"doi\":\"10.1109/INTELCIS.2015.7397209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, collagen diseases propagated due to many factors such as pressure and pollution. Thrombosis is one of the most famous collagen diseases that obstruct the blood flow causing vital complications for crucial parts of the circulatory system. Such diseases cause a high risk for the doctors due to the huge number of the laboratory examinations and the efforts to diagnosis. Accordingly, this paper implements C4.5 algorithm, as one of the most famous data mining techniques, on real thrombosis dataset. The dataset was collected from Chiba University as a challenging dataset for thrombosis diagnosis. The results show that the C4.5 could diagnose the thrombosis degree with accuracy 98.4%.\",\"PeriodicalId\":6478,\"journal\":{\"name\":\"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"volume\":\"40 1\",\"pages\":\"131-136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELCIS.2015.7397209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,由于压力、污染等多种因素,胶原蛋白疾病不断蔓延。血栓形成是最著名的胶原蛋白疾病之一,它会阻碍血液流动,导致循环系统关键部位的严重并发症。由于大量的实验室检查和诊断工作,这类疾病对医生来说风险很高。因此,本文在真实血栓形成数据集上实现了C4.5算法这一最著名的数据挖掘技术。该数据集来自千叶大学,是血栓诊断的一个具有挑战性的数据集。结果表明,C4.5对血栓形成程度的诊断准确率为98.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of thrombosis collagen diseases based on C4.5 algorithm
Recently, collagen diseases propagated due to many factors such as pressure and pollution. Thrombosis is one of the most famous collagen diseases that obstruct the blood flow causing vital complications for crucial parts of the circulatory system. Such diseases cause a high risk for the doctors due to the huge number of the laboratory examinations and the efforts to diagnosis. Accordingly, this paper implements C4.5 algorithm, as one of the most famous data mining techniques, on real thrombosis dataset. The dataset was collected from Chiba University as a challenging dataset for thrombosis diagnosis. The results show that the C4.5 could diagnose the thrombosis degree with accuracy 98.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the use of probabilistic model-checking for the verification of prognostics applications Prospective, knowledge based clinical risk analysis: The OPT-model Partial deduction in predicate calculus as a tool for artificial intelligence problem complexity decreasing XML summarization: A survey Finding the pin in the haystack: A Bot Traceback service for public clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1