生物钟调节拟南芥向地性反应

J. Tolsma, Kaetlyn T. Ryan, Jacob J. Torres, J. Richards, Z. Richardson, Eric S. Land, I. Perera, Colleen J. Doherty
{"title":"生物钟调节拟南芥向地性反应","authors":"J. Tolsma, Kaetlyn T. Ryan, Jacob J. Torres, J. Richards, Z. Richardson, Eric S. Land, I. Perera, Colleen J. Doherty","doi":"10.2478/gsr-2021-0014","DOIUrl":null,"url":null,"abstract":"Abstract For long-term space missions, it is necessary to understand how organisms respond to changes in gravity. Plant roots are positively gravitropic; the primary root grows parallel to gravity's pull even after being turned away from the direction of gravity. We examined if this gravitropic response varies depending on the time of day reorientation occurs. When plants were reoriented in relation to the gravity vector or placed in simulated microgravity, the magnitude of the root gravitropic response varied depending on the time of day the initial change in gravity occurred. The response was greatest when plants were reoriented at dusk, just before a period of rapid growth, and were minimal just before dawn as the plants entered a period of reduced root growth. We found that this variation in the magnitude of the gravitropic response persisted in constant light (CL) suggesting the variation is circadian-regulated. Gravitropic responses were disrupted in plants with disrupted circadian clocks, including plants overexpressing Circadian-clock Associated 1 (CCA1) and elf3-2, in the reorientation assay and on a 2D clinostat. These findings indicate that circadian-regulated pathways modulate the gravitropic responses, thus, highlighting the importance of considering and recording the time of day gravitropic experiments are performed.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Circadian-clock Regulates the Arabidopsis Gravitropic Response\",\"authors\":\"J. Tolsma, Kaetlyn T. Ryan, Jacob J. Torres, J. Richards, Z. Richardson, Eric S. Land, I. Perera, Colleen J. Doherty\",\"doi\":\"10.2478/gsr-2021-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For long-term space missions, it is necessary to understand how organisms respond to changes in gravity. Plant roots are positively gravitropic; the primary root grows parallel to gravity's pull even after being turned away from the direction of gravity. We examined if this gravitropic response varies depending on the time of day reorientation occurs. When plants were reoriented in relation to the gravity vector or placed in simulated microgravity, the magnitude of the root gravitropic response varied depending on the time of day the initial change in gravity occurred. The response was greatest when plants were reoriented at dusk, just before a period of rapid growth, and were minimal just before dawn as the plants entered a period of reduced root growth. We found that this variation in the magnitude of the gravitropic response persisted in constant light (CL) suggesting the variation is circadian-regulated. Gravitropic responses were disrupted in plants with disrupted circadian clocks, including plants overexpressing Circadian-clock Associated 1 (CCA1) and elf3-2, in the reorientation assay and on a 2D clinostat. These findings indicate that circadian-regulated pathways modulate the gravitropic responses, thus, highlighting the importance of considering and recording the time of day gravitropic experiments are performed.\",\"PeriodicalId\":90510,\"journal\":{\"name\":\"Gravitational and space research : publication of the American Society for Gravitational and Space Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitational and space research : publication of the American Society for Gravitational and Space Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/gsr-2021-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/gsr-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于长期太空任务,有必要了解生物如何对重力变化做出反应。植物的根正向地性;主根即使在偏离重力方向后,也会与重力平行生长。我们研究了这种向地性反应是否会随着一天中重新定位发生的时间而变化。当植物相对于重力矢量重新定向或置于模拟微重力环境时,根系向地性响应的大小随重力初始变化发生的时间而变化。当植物在黄昏时重新定向时,就在快速生长期之前,这种反应是最大的,而在黎明前,当植物进入根系生长减少的时期时,这种反应最小。我们发现,这种向地性响应的大小变化在恒光(CL)下持续存在,这表明这种变化是受昼夜节律调节的。生物钟被打乱的植物,包括过度表达生物钟相关1 (CCA1)和elf3-2的植物,在定向实验和2D恒温器上的向地性反应被打乱。这些发现表明,昼夜调节的通路调节着向地性反应,因此,强调了考虑和记录一天中的向地性实验的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Circadian-clock Regulates the Arabidopsis Gravitropic Response
Abstract For long-term space missions, it is necessary to understand how organisms respond to changes in gravity. Plant roots are positively gravitropic; the primary root grows parallel to gravity's pull even after being turned away from the direction of gravity. We examined if this gravitropic response varies depending on the time of day reorientation occurs. When plants were reoriented in relation to the gravity vector or placed in simulated microgravity, the magnitude of the root gravitropic response varied depending on the time of day the initial change in gravity occurred. The response was greatest when plants were reoriented at dusk, just before a period of rapid growth, and were minimal just before dawn as the plants entered a period of reduced root growth. We found that this variation in the magnitude of the gravitropic response persisted in constant light (CL) suggesting the variation is circadian-regulated. Gravitropic responses were disrupted in plants with disrupted circadian clocks, including plants overexpressing Circadian-clock Associated 1 (CCA1) and elf3-2, in the reorientation assay and on a 2D clinostat. These findings indicate that circadian-regulated pathways modulate the gravitropic responses, thus, highlighting the importance of considering and recording the time of day gravitropic experiments are performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. Design, Build and Testing of Hardware to Safely Harvest Microgreens in Microgravity A Novel Approach to Teaching a General Education Course on Astrobiology Nonlinear Agglomeration of Bimodal Colloids under Microgravity Design of Spaceflight Hardware for Plant Growth in a Sealed Habitat for Experiments on the Moon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1