基于深度学习的锻模智能诊断

Haw-Ching Yang, Chun-Hong Zheng, Yu-Zhong Chen, Chien-Ming Tseng, Y. Kao
{"title":"基于深度学习的锻模智能诊断","authors":"Haw-Ching Yang, Chun-Hong Zheng, Yu-Zhong Chen, Chien-Ming Tseng, Y. Kao","doi":"10.1109/COASE.2018.8560420","DOIUrl":null,"url":null,"abstract":"Estimating the states of a cold-forging die is challenging when trying to extract the features from load-stroke signals during the long-term process. To solve this problem, this paper proposes a diagnosis learning model with an autoencoder and a support vector machine to distinguish the die states from the load-stoke signals. The autoencoder is utilized to extract the encoded features that serve as the input of the support vector machine to cluster die states. With timely indication of the current die state estimated by the learning model, the proposed die diagnosis system is promising to achieve the goal of reducing time for die maintenance.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"11 1","pages":"199-204"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Diagnosis of Forging Die based on Deep Learning\",\"authors\":\"Haw-Ching Yang, Chun-Hong Zheng, Yu-Zhong Chen, Chien-Ming Tseng, Y. Kao\",\"doi\":\"10.1109/COASE.2018.8560420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the states of a cold-forging die is challenging when trying to extract the features from load-stroke signals during the long-term process. To solve this problem, this paper proposes a diagnosis learning model with an autoencoder and a support vector machine to distinguish the die states from the load-stoke signals. The autoencoder is utilized to extract the encoded features that serve as the input of the support vector machine to cluster die states. With timely indication of the current die state estimated by the learning model, the proposed die diagnosis system is promising to achieve the goal of reducing time for die maintenance.\",\"PeriodicalId\":6518,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"11 1\",\"pages\":\"199-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2018.8560420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在长期加工过程中,当试图从载荷-行程信号中提取特征时,估计冷锻模的状态是具有挑战性的。为了解决这一问题,本文提出了一种基于自编码器和支持向量机的诊断学习模型,用于从负载-冲击信号中区分模具状态。利用自编码器提取编码特征作为支持向量机的输入,对模具状态进行聚类。通过学习模型对当前模具状态的及时指示,该系统有望实现减少模具维修时间的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Diagnosis of Forging Die based on Deep Learning
Estimating the states of a cold-forging die is challenging when trying to extract the features from load-stroke signals during the long-term process. To solve this problem, this paper proposes a diagnosis learning model with an autoencoder and a support vector machine to distinguish the die states from the load-stoke signals. The autoencoder is utilized to extract the encoded features that serve as the input of the support vector machine to cluster die states. With timely indication of the current die state estimated by the learning model, the proposed die diagnosis system is promising to achieve the goal of reducing time for die maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1