Min Hee Park , Hyungjun Kim , Jae Jung Urm , Jun Ho Lee , Young-Kyu Han , Yoon Sup Lee
{"title":"Li-N-H储氢系统的氢解吸机理","authors":"Min Hee Park , Hyungjun Kim , Jae Jung Urm , Jun Ho Lee , Young-Kyu Han , Yoon Sup Lee","doi":"10.1016/j.theochem.2010.09.016","DOIUrl":null,"url":null,"abstract":"<div><p>Alkali metal amides may exist in solution, the solid phase, and even the gas phase. Based on a theoretical model of a Li<sub>3</sub>N system which adsorbs and desorbs two hydrogen molecules, we examine the possible pathways of the <span><math><mrow><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>3</mn></mrow></msub><mtext>N</mtext><mo>+</mo><mn>2</mn><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>↔</mo><msub><mrow><mtext>LiNH</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn><mtext>LiH</mtext></mrow></math></span> reversible reaction. The dehydrogenation process can be separated into two-step reactions, <span><math><mrow><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>2</mn></mrow></msub><mtext>NH</mtext><mo>+</mo><mtext>LiH</mtext><mo>→</mo><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>3</mn></mrow></msub><mtext>N</mtext><mo>+</mo><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> (−9.5<!--> <!-->kcal/mol exothermic) and <span><math><mrow><msub><mrow><mtext>LiNH</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mtext>LiH</mtext><mo>→</mo><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>2</mn></mrow></msub><mtext>NH</mtext><mo>+</mo><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> (+0.7<!--> <!-->kcal/mol endothermic). Along the reaction pathway, two intermediates and a transition state for each reaction were found in our <em>ab initio</em> molecular orbital calculations at the MP2 and CCSD(T) levels of theory. A total of two H<sub>2</sub> molecules can be stored and released at normal temperature and pressure if there are means to substantially raise the energy of the two stable intermediates. Reaction energy profiles from our calculations support the much higher temperature of the first step reaction in experiment.</p></div>","PeriodicalId":16419,"journal":{"name":"Journal of Molecular Structure-theochem","volume":"962 1","pages":"Pages 68-71"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.theochem.2010.09.016","citationCount":"5","resultStr":"{\"title\":\"Hydrogen desorption mechanism of a Li–N–H hydrogen storage system\",\"authors\":\"Min Hee Park , Hyungjun Kim , Jae Jung Urm , Jun Ho Lee , Young-Kyu Han , Yoon Sup Lee\",\"doi\":\"10.1016/j.theochem.2010.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alkali metal amides may exist in solution, the solid phase, and even the gas phase. Based on a theoretical model of a Li<sub>3</sub>N system which adsorbs and desorbs two hydrogen molecules, we examine the possible pathways of the <span><math><mrow><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>3</mn></mrow></msub><mtext>N</mtext><mo>+</mo><mn>2</mn><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>↔</mo><msub><mrow><mtext>LiNH</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn><mtext>LiH</mtext></mrow></math></span> reversible reaction. The dehydrogenation process can be separated into two-step reactions, <span><math><mrow><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>2</mn></mrow></msub><mtext>NH</mtext><mo>+</mo><mtext>LiH</mtext><mo>→</mo><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>3</mn></mrow></msub><mtext>N</mtext><mo>+</mo><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> (−9.5<!--> <!-->kcal/mol exothermic) and <span><math><mrow><msub><mrow><mtext>LiNH</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mtext>LiH</mtext><mo>→</mo><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>2</mn></mrow></msub><mtext>NH</mtext><mo>+</mo><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> (+0.7<!--> <!-->kcal/mol endothermic). Along the reaction pathway, two intermediates and a transition state for each reaction were found in our <em>ab initio</em> molecular orbital calculations at the MP2 and CCSD(T) levels of theory. A total of two H<sub>2</sub> molecules can be stored and released at normal temperature and pressure if there are means to substantially raise the energy of the two stable intermediates. Reaction energy profiles from our calculations support the much higher temperature of the first step reaction in experiment.</p></div>\",\"PeriodicalId\":16419,\"journal\":{\"name\":\"Journal of Molecular Structure-theochem\",\"volume\":\"962 1\",\"pages\":\"Pages 68-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.theochem.2010.09.016\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure-theochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166128010005877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure-theochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166128010005877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogen desorption mechanism of a Li–N–H hydrogen storage system
Alkali metal amides may exist in solution, the solid phase, and even the gas phase. Based on a theoretical model of a Li3N system which adsorbs and desorbs two hydrogen molecules, we examine the possible pathways of the reversible reaction. The dehydrogenation process can be separated into two-step reactions, (−9.5 kcal/mol exothermic) and (+0.7 kcal/mol endothermic). Along the reaction pathway, two intermediates and a transition state for each reaction were found in our ab initio molecular orbital calculations at the MP2 and CCSD(T) levels of theory. A total of two H2 molecules can be stored and released at normal temperature and pressure if there are means to substantially raise the energy of the two stable intermediates. Reaction energy profiles from our calculations support the much higher temperature of the first step reaction in experiment.