{"title":"非齐次空间点过程的信息准则","authors":"Achmad Choiruddin, Jean-François Coeurjolly, Rasmus Waagepetersen","doi":"10.1111/anzs.12327","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The theoretical foundation for a number of model selection criteria is established in the context of inhomogeneous point processes and under various asymptotic settings: infill, increasing domain and combinations of these. For inhomogeneous Poisson processes we consider Akaike's information criterion and the Bayesian information criterion, and in particular we identify the point process analogue of ‘sample size’ needed for the Bayesian information criterion. Considering general inhomogeneous point processes we derive new composite likelihood and composite Bayesian information criteria for selecting a regression model for the intensity function. The proposed model selection criteria are evaluated using simulations of Poisson processes and cluster point processes.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"63 1","pages":"119-143"},"PeriodicalIF":0.8000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/anzs.12327","citationCount":"24","resultStr":"{\"title\":\"Information criteria for inhomogeneous spatial point processes\",\"authors\":\"Achmad Choiruddin, Jean-François Coeurjolly, Rasmus Waagepetersen\",\"doi\":\"10.1111/anzs.12327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The theoretical foundation for a number of model selection criteria is established in the context of inhomogeneous point processes and under various asymptotic settings: infill, increasing domain and combinations of these. For inhomogeneous Poisson processes we consider Akaike's information criterion and the Bayesian information criterion, and in particular we identify the point process analogue of ‘sample size’ needed for the Bayesian information criterion. Considering general inhomogeneous point processes we derive new composite likelihood and composite Bayesian information criteria for selecting a regression model for the intensity function. The proposed model selection criteria are evaluated using simulations of Poisson processes and cluster point processes.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"63 1\",\"pages\":\"119-143\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/anzs.12327\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12327\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12327","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Information criteria for inhomogeneous spatial point processes
The theoretical foundation for a number of model selection criteria is established in the context of inhomogeneous point processes and under various asymptotic settings: infill, increasing domain and combinations of these. For inhomogeneous Poisson processes we consider Akaike's information criterion and the Bayesian information criterion, and in particular we identify the point process analogue of ‘sample size’ needed for the Bayesian information criterion. Considering general inhomogeneous point processes we derive new composite likelihood and composite Bayesian information criteria for selecting a regression model for the intensity function. The proposed model selection criteria are evaluated using simulations of Poisson processes and cluster point processes.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.