Hugo Santacruz-Reyes, L. García-Valdovinos, Hugo Jiménez-Hernández, Alan G. López-Segovia, O. Dominguez-Ramirez
{"title":"基于鲁棒高阶滑模的未知恒时延双用户遥操作阻抗控制","authors":"Hugo Santacruz-Reyes, L. García-Valdovinos, Hugo Jiménez-Hernández, Alan G. López-Segovia, O. Dominguez-Ramirez","doi":"10.1109/ICEEE.2014.6978304","DOIUrl":null,"url":null,"abstract":"This paper presents a dual-user teleoperation scheme to perform a collaborative task using n-DOF nonlinear manipulators as masters and slave. It consists on impedance controllers for the manipulators in order to achieve a desired dynamic behavior depending on the user's necessities. Moreover, to cope with the uncertainty in the slave, a sliding mode controller is introduced and a desired impedance model for the salve is chosen as the sliding surface. Since the slave teleoperator is in contact with a rigid environment, the slave controller requires a free of chattering control strategy, which makes first order sliding mode teleoperation control unsuitable. Then a higher order sliding mode based impedance controller is proposed to guarantee robust impedance tracking under constant, but unknown time delay. Therefore, a position scaling factor is incorporated to deal with the different workspaces among masters and slave. The validity of the proposed control scheme is demonstrated via simulations performed on a 3-DOF dual-user teleoperation system. The simulation setup includes a Phantom Premium 1.0, a Phantom Omni, a Catalyst-5 and communication channels which suffer from constant unknown time delays.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"11 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust higher order sliding mode based impedance control for dual-user teleoperation under unknown constant time delay\",\"authors\":\"Hugo Santacruz-Reyes, L. García-Valdovinos, Hugo Jiménez-Hernández, Alan G. López-Segovia, O. Dominguez-Ramirez\",\"doi\":\"10.1109/ICEEE.2014.6978304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a dual-user teleoperation scheme to perform a collaborative task using n-DOF nonlinear manipulators as masters and slave. It consists on impedance controllers for the manipulators in order to achieve a desired dynamic behavior depending on the user's necessities. Moreover, to cope with the uncertainty in the slave, a sliding mode controller is introduced and a desired impedance model for the salve is chosen as the sliding surface. Since the slave teleoperator is in contact with a rigid environment, the slave controller requires a free of chattering control strategy, which makes first order sliding mode teleoperation control unsuitable. Then a higher order sliding mode based impedance controller is proposed to guarantee robust impedance tracking under constant, but unknown time delay. Therefore, a position scaling factor is incorporated to deal with the different workspaces among masters and slave. The validity of the proposed control scheme is demonstrated via simulations performed on a 3-DOF dual-user teleoperation system. The simulation setup includes a Phantom Premium 1.0, a Phantom Omni, a Catalyst-5 and communication channels which suffer from constant unknown time delays.\",\"PeriodicalId\":6661,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"11 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2014.6978304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust higher order sliding mode based impedance control for dual-user teleoperation under unknown constant time delay
This paper presents a dual-user teleoperation scheme to perform a collaborative task using n-DOF nonlinear manipulators as masters and slave. It consists on impedance controllers for the manipulators in order to achieve a desired dynamic behavior depending on the user's necessities. Moreover, to cope with the uncertainty in the slave, a sliding mode controller is introduced and a desired impedance model for the salve is chosen as the sliding surface. Since the slave teleoperator is in contact with a rigid environment, the slave controller requires a free of chattering control strategy, which makes first order sliding mode teleoperation control unsuitable. Then a higher order sliding mode based impedance controller is proposed to guarantee robust impedance tracking under constant, but unknown time delay. Therefore, a position scaling factor is incorporated to deal with the different workspaces among masters and slave. The validity of the proposed control scheme is demonstrated via simulations performed on a 3-DOF dual-user teleoperation system. The simulation setup includes a Phantom Premium 1.0, a Phantom Omni, a Catalyst-5 and communication channels which suffer from constant unknown time delays.