Sunmi Kim, H. Terai, T. Yamashita, W. Qiu, T. Fuse, F. Yoshihara, S. Ashhab, K. Inomata, K. Semba
{"title":"在硅衬底外延生长的增强相干全氮超导量子比特","authors":"Sunmi Kim, H. Terai, T. Yamashita, W. Qiu, T. Fuse, F. Yoshihara, S. Ashhab, K. Inomata, K. Semba","doi":"10.21203/RS.3.RS-343585/V1","DOIUrl":null,"url":null,"abstract":"\n We have developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on Si substrates which promise to overcome the drawbacks of qubits based on Al/AlOx/Al junctions. The all-nitride qubits have great advantages such as chemical stability against oxidation (resulting in fewer two-level fluctuators), feasibility for epitaxial tunnel barriers (further reducing energy relaxation and dephasing), and a larger superconducting gap of ~ 5.2 meV for NbN compared to ~ 0.3 meV for Al (suppressing the excitation of quasiparticles). Replacing conventional MgO by a Si substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we demonstrate a qubit energy relaxation time \\({T}_{1}=16.3 {\\mu }\\text{s}\\) and a spin-echo dephasing time \\({T}_{2}=21.5 {\\mu }\\text{s}\\). These significant improvements in quantum coherence are explained by the reduced dielectric loss compared to previously reported NbN-based qubits with MgO substrates (\\({T}_{1}\\approx {T}_{2}\\approx 0.5 {\\mu }\\text{s}\\)). These results are an important step towards constructing a new platform for superconducting quantum hardware.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Enhanced-coherence all-nitride superconducting qubit epitaxially grown on Si substrate\",\"authors\":\"Sunmi Kim, H. Terai, T. Yamashita, W. Qiu, T. Fuse, F. Yoshihara, S. Ashhab, K. Inomata, K. Semba\",\"doi\":\"10.21203/RS.3.RS-343585/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We have developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on Si substrates which promise to overcome the drawbacks of qubits based on Al/AlOx/Al junctions. The all-nitride qubits have great advantages such as chemical stability against oxidation (resulting in fewer two-level fluctuators), feasibility for epitaxial tunnel barriers (further reducing energy relaxation and dephasing), and a larger superconducting gap of ~ 5.2 meV for NbN compared to ~ 0.3 meV for Al (suppressing the excitation of quasiparticles). Replacing conventional MgO by a Si substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we demonstrate a qubit energy relaxation time \\\\({T}_{1}=16.3 {\\\\mu }\\\\text{s}\\\\) and a spin-echo dephasing time \\\\({T}_{2}=21.5 {\\\\mu }\\\\text{s}\\\\). These significant improvements in quantum coherence are explained by the reduced dielectric loss compared to previously reported NbN-based qubits with MgO substrates (\\\\({T}_{1}\\\\approx {T}_{2}\\\\approx 0.5 {\\\\mu }\\\\text{s}\\\\)). These results are an important step towards constructing a new platform for superconducting quantum hardware.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-343585/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-343585/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced-coherence all-nitride superconducting qubit epitaxially grown on Si substrate
We have developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on Si substrates which promise to overcome the drawbacks of qubits based on Al/AlOx/Al junctions. The all-nitride qubits have great advantages such as chemical stability against oxidation (resulting in fewer two-level fluctuators), feasibility for epitaxial tunnel barriers (further reducing energy relaxation and dephasing), and a larger superconducting gap of ~ 5.2 meV for NbN compared to ~ 0.3 meV for Al (suppressing the excitation of quasiparticles). Replacing conventional MgO by a Si substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we demonstrate a qubit energy relaxation time \({T}_{1}=16.3 {\mu }\text{s}\) and a spin-echo dephasing time \({T}_{2}=21.5 {\mu }\text{s}\). These significant improvements in quantum coherence are explained by the reduced dielectric loss compared to previously reported NbN-based qubits with MgO substrates (\({T}_{1}\approx {T}_{2}\approx 0.5 {\mu }\text{s}\)). These results are an important step towards constructing a new platform for superconducting quantum hardware.