{"title":"Synoris:一种基于水听器阵列的水下无人平台,用于声音信号的探测和跟踪","authors":"N. Papadakis, Dimitris Paraschos","doi":"10.46300/9106.2022.16.96","DOIUrl":null,"url":null,"abstract":"Sonars have been in practical use since the turn of the 20th century. They are considered to be among the most sophisticated engineering systems concerning detection and tracking. Unmanned underwater vehicles have recently evolved to a higher degree of sophistication with enough processing power to run more demanding artificial intelligence (AI) algorithms. This work is focused on the development of a robust signal processing algorithm on board an Autonomous Underwater Vehicle (AUV), named Synoris, enhanced with target identification capabilities. Synoris is able to perform feature extraction, classification and identification using only on board hardware.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synoris: an Unmanned Underwater Platform Based on Hydrophone Arrays for Detection and Tracking From Sound Signatures\",\"authors\":\"N. Papadakis, Dimitris Paraschos\",\"doi\":\"10.46300/9106.2022.16.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sonars have been in practical use since the turn of the 20th century. They are considered to be among the most sophisticated engineering systems concerning detection and tracking. Unmanned underwater vehicles have recently evolved to a higher degree of sophistication with enough processing power to run more demanding artificial intelligence (AI) algorithms. This work is focused on the development of a robust signal processing algorithm on board an Autonomous Underwater Vehicle (AUV), named Synoris, enhanced with target identification capabilities. Synoris is able to perform feature extraction, classification and identification using only on board hardware.\",\"PeriodicalId\":13929,\"journal\":{\"name\":\"International Journal of Circuits, Systems and Signal Processing\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9106.2022.16.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2022.16.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Synoris: an Unmanned Underwater Platform Based on Hydrophone Arrays for Detection and Tracking From Sound Signatures
Sonars have been in practical use since the turn of the 20th century. They are considered to be among the most sophisticated engineering systems concerning detection and tracking. Unmanned underwater vehicles have recently evolved to a higher degree of sophistication with enough processing power to run more demanding artificial intelligence (AI) algorithms. This work is focused on the development of a robust signal processing algorithm on board an Autonomous Underwater Vehicle (AUV), named Synoris, enhanced with target identification capabilities. Synoris is able to perform feature extraction, classification and identification using only on board hardware.