Jie Sun, Chao Ding, Jian-Yong Zheng, Xin-Jun Yu, Man Zhao, Zhao Wang
{"title":"固定化tl100l脂肪酶催化dl-薄荷醇的对映选择性酯化反应","authors":"Jie Sun, Chao Ding, Jian-Yong Zheng, Xin-Jun Yu, Man Zhao, Zhao Wang","doi":"10.1016/j.molcatb.2017.01.013","DOIUrl":null,"url":null,"abstract":"<div><p>Lipozyme TL IM exhibits high enantioselectivity for the resolution of <span>dl</span>-menthol by the esterification of <span>l</span>-menthol. However, in this study, some factors such as protein loss, enzyme inactivation, and acetaldehyde damage greatly reduced the reaction conversion. For relieving the effects of these factors, macroporous resin that absorbs more protein was selected to immobilize Lipozyme TL 100L lipase with trehalose as the modifying agent. The immobilized lipases retained 37.2% of their initial activity after 8 times of repeated use. A packed-bed reaction system was designed to prevent the leaching of adsorbed lipase molecules out of the macroporous resin pore and to outflow acetaldehyde with the product. The immobilized lipase was continuously used with ee<sub>p</sub> <!-->><!--> <!-->99.0%. Over 83.9% of the initial conversion remained after the reaction solution of 100 column volumes was pumped into the lipase column. The average volumetric productivity of <span>l</span>-menthyl acetate was 0.76<!--> <!-->g/L/h. This process is readily applicable to large-scale preparation for optically active menthol.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages S271-S276"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2017.01.013","citationCount":"4","resultStr":"{\"title\":\"Improved enantioselective esterification of dl-menthol catalyzed by immobilized TL 100L lipase\",\"authors\":\"Jie Sun, Chao Ding, Jian-Yong Zheng, Xin-Jun Yu, Man Zhao, Zhao Wang\",\"doi\":\"10.1016/j.molcatb.2017.01.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lipozyme TL IM exhibits high enantioselectivity for the resolution of <span>dl</span>-menthol by the esterification of <span>l</span>-menthol. However, in this study, some factors such as protein loss, enzyme inactivation, and acetaldehyde damage greatly reduced the reaction conversion. For relieving the effects of these factors, macroporous resin that absorbs more protein was selected to immobilize Lipozyme TL 100L lipase with trehalose as the modifying agent. The immobilized lipases retained 37.2% of their initial activity after 8 times of repeated use. A packed-bed reaction system was designed to prevent the leaching of adsorbed lipase molecules out of the macroporous resin pore and to outflow acetaldehyde with the product. The immobilized lipase was continuously used with ee<sub>p</sub> <!-->><!--> <!-->99.0%. Over 83.9% of the initial conversion remained after the reaction solution of 100 column volumes was pumped into the lipase column. The average volumetric productivity of <span>l</span>-menthyl acetate was 0.76<!--> <!-->g/L/h. This process is readily applicable to large-scale preparation for optically active menthol.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"133 \",\"pages\":\"Pages S271-S276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2017.01.013\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117717300139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117717300139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
Improved enantioselective esterification of dl-menthol catalyzed by immobilized TL 100L lipase
Lipozyme TL IM exhibits high enantioselectivity for the resolution of dl-menthol by the esterification of l-menthol. However, in this study, some factors such as protein loss, enzyme inactivation, and acetaldehyde damage greatly reduced the reaction conversion. For relieving the effects of these factors, macroporous resin that absorbs more protein was selected to immobilize Lipozyme TL 100L lipase with trehalose as the modifying agent. The immobilized lipases retained 37.2% of their initial activity after 8 times of repeated use. A packed-bed reaction system was designed to prevent the leaching of adsorbed lipase molecules out of the macroporous resin pore and to outflow acetaldehyde with the product. The immobilized lipase was continuously used with eep > 99.0%. Over 83.9% of the initial conversion remained after the reaction solution of 100 column volumes was pumped into the lipase column. The average volumetric productivity of l-menthyl acetate was 0.76 g/L/h. This process is readily applicable to large-scale preparation for optically active menthol.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.