{"title":"化无形为有形:实与虚的融合促进抽象现象的学习","authors":"Stéphanie Fleck, M. Hachet","doi":"10.3389/fict.2016.00030","DOIUrl":null,"url":null,"abstract":"Interactive systems based on Augmented Reality (AR) and Tangible User Interfaces (TUI) hold great promise for enhancing the learning and understanding of abstract phenomena. In particular, they enable to take advantage of numerical simulation and pedagogical supports, while keeping the learner involved in true physical experimentations. In this paper, we present three examples based on AR and TUI, where the concepts to be learnt are difficult to perceive. The first one, Helios, targets K-12 learners in the field of astronomy. The second one, Hobit is dedicated to experiments in wave optics. Finally, the third one, Teegi, allows one to get to know more about brain activity. These three hybrid interfaces have emerged from a common basis that jointly combines research and development work in the fields of Instructional Design and Human-Computer Interaction, from theoretical to practical aspects. On the basis of investigations carried out in real context of use and on the grounding works in education and HCI which corroborate the design choices that were made, we formalize how and why the hybridization of the real and the virtual enables to leverage the way learners understand intangible phenomena in Sciences education.","PeriodicalId":37157,"journal":{"name":"Frontiers in ICT","volume":"142 1","pages":"30"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Making Tangible the Intangible: Hybridization of the Real and the Virtual to Enhance Learning of Abstract Phenomena\",\"authors\":\"Stéphanie Fleck, M. Hachet\",\"doi\":\"10.3389/fict.2016.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive systems based on Augmented Reality (AR) and Tangible User Interfaces (TUI) hold great promise for enhancing the learning and understanding of abstract phenomena. In particular, they enable to take advantage of numerical simulation and pedagogical supports, while keeping the learner involved in true physical experimentations. In this paper, we present three examples based on AR and TUI, where the concepts to be learnt are difficult to perceive. The first one, Helios, targets K-12 learners in the field of astronomy. The second one, Hobit is dedicated to experiments in wave optics. Finally, the third one, Teegi, allows one to get to know more about brain activity. These three hybrid interfaces have emerged from a common basis that jointly combines research and development work in the fields of Instructional Design and Human-Computer Interaction, from theoretical to practical aspects. On the basis of investigations carried out in real context of use and on the grounding works in education and HCI which corroborate the design choices that were made, we formalize how and why the hybridization of the real and the virtual enables to leverage the way learners understand intangible phenomena in Sciences education.\",\"PeriodicalId\":37157,\"journal\":{\"name\":\"Frontiers in ICT\",\"volume\":\"142 1\",\"pages\":\"30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in ICT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fict.2016.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in ICT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fict.2016.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Making Tangible the Intangible: Hybridization of the Real and the Virtual to Enhance Learning of Abstract Phenomena
Interactive systems based on Augmented Reality (AR) and Tangible User Interfaces (TUI) hold great promise for enhancing the learning and understanding of abstract phenomena. In particular, they enable to take advantage of numerical simulation and pedagogical supports, while keeping the learner involved in true physical experimentations. In this paper, we present three examples based on AR and TUI, where the concepts to be learnt are difficult to perceive. The first one, Helios, targets K-12 learners in the field of astronomy. The second one, Hobit is dedicated to experiments in wave optics. Finally, the third one, Teegi, allows one to get to know more about brain activity. These three hybrid interfaces have emerged from a common basis that jointly combines research and development work in the fields of Instructional Design and Human-Computer Interaction, from theoretical to practical aspects. On the basis of investigations carried out in real context of use and on the grounding works in education and HCI which corroborate the design choices that were made, we formalize how and why the hybridization of the real and the virtual enables to leverage the way learners understand intangible phenomena in Sciences education.