第三代CSP材料:有限的现有和新的调查数据的批判性审查

Andrey Gunawan, Bettina K. Arkhurst, Sonja Brankovic, S. Yee
{"title":"第三代CSP材料:有限的现有和新的调查数据的批判性审查","authors":"Andrey Gunawan, Bettina K. Arkhurst, Sonja Brankovic, S. Yee","doi":"10.1115/es2020-1690","DOIUrl":null,"url":null,"abstract":"\n Novel high temperature (≥ 700°C) Heat Transfer Medias (HTMs, e.g., molten salts) and corrosion-resistant Containment Materials (CMs, e.g., metal alloys or ceramics) are necessary for concentrated solar power (CSP) given the emphasis on higher temperatures and high cycle efficiency in the 3rd generation CSP (Gen3 CSP) technologies. In early 2019, we sent out an online survey to the Gen3 CSP community to fully assess the communal needs for thermophysical properties measurements of which HTMs and CMs, and what temperature range and other testing environments would be ideal for those materials. Based on the recorded responses, seven unique HTMs and twenty-six unique CMs were identified. Since then the list has been constantly updated, following our interactions and inputs from the Gen3 CSP community, with some new materials substituting their older counterparts. Currently, there are total of ten unique HTMs and twenty-nine unique CMs that are under consideration by the Gen3 CSP community. By analyzing the available body of research to date and combining it with our survey data from within the Gen3 CSP community, this paper presents trends of what people in the CSP world are thinking regarding materials worth investigating and suggests which thermophysical property measurements are critical to advance high-temperature CSP systems.","PeriodicalId":8602,"journal":{"name":"ASME 2020 14th International Conference on Energy Sustainability","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gen3 CSP Materials: Critical Review of Limited Existing and New Survey Data\",\"authors\":\"Andrey Gunawan, Bettina K. Arkhurst, Sonja Brankovic, S. Yee\",\"doi\":\"10.1115/es2020-1690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Novel high temperature (≥ 700°C) Heat Transfer Medias (HTMs, e.g., molten salts) and corrosion-resistant Containment Materials (CMs, e.g., metal alloys or ceramics) are necessary for concentrated solar power (CSP) given the emphasis on higher temperatures and high cycle efficiency in the 3rd generation CSP (Gen3 CSP) technologies. In early 2019, we sent out an online survey to the Gen3 CSP community to fully assess the communal needs for thermophysical properties measurements of which HTMs and CMs, and what temperature range and other testing environments would be ideal for those materials. Based on the recorded responses, seven unique HTMs and twenty-six unique CMs were identified. Since then the list has been constantly updated, following our interactions and inputs from the Gen3 CSP community, with some new materials substituting their older counterparts. Currently, there are total of ten unique HTMs and twenty-nine unique CMs that are under consideration by the Gen3 CSP community. By analyzing the available body of research to date and combining it with our survey data from within the Gen3 CSP community, this paper presents trends of what people in the CSP world are thinking regarding materials worth investigating and suggests which thermophysical property measurements are critical to advance high-temperature CSP systems.\",\"PeriodicalId\":8602,\"journal\":{\"name\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2020-1690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 14th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2020-1690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新型高温(≥700°C)传热介质(HTMs,例如熔盐)和耐腐蚀密封材料(CMs,例如金属合金或陶瓷)是集中式太阳能发电(CSP)所必需的,因为第三代CSP (Gen3 CSP)技术强调更高的温度和高循环效率。2019年初,我们向Gen3 CSP社区发起了一项在线调查,以全面评估对哪种htm和CMs的热物理性质测量的共同需求,以及对这些材料理想的温度范围和其他测试环境。根据记录的回复,鉴定出7个独特的html和26个独特的CMs。从那时起,随着我们与Gen3 CSP社区的互动和投入,该列表不断更新,一些新材料取代了旧材料。目前,共有10个独特的html和29个独特的CMs正在Gen3 CSP社区的考虑中。通过分析迄今为止的研究成果,并将其与我们在Gen3 CSP社区的调查数据相结合,本文提出了CSP世界中人们对值得研究的材料的看法的趋势,并提出了哪些热物理性质测量对推进高温CSP系统至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gen3 CSP Materials: Critical Review of Limited Existing and New Survey Data
Novel high temperature (≥ 700°C) Heat Transfer Medias (HTMs, e.g., molten salts) and corrosion-resistant Containment Materials (CMs, e.g., metal alloys or ceramics) are necessary for concentrated solar power (CSP) given the emphasis on higher temperatures and high cycle efficiency in the 3rd generation CSP (Gen3 CSP) technologies. In early 2019, we sent out an online survey to the Gen3 CSP community to fully assess the communal needs for thermophysical properties measurements of which HTMs and CMs, and what temperature range and other testing environments would be ideal for those materials. Based on the recorded responses, seven unique HTMs and twenty-six unique CMs were identified. Since then the list has been constantly updated, following our interactions and inputs from the Gen3 CSP community, with some new materials substituting their older counterparts. Currently, there are total of ten unique HTMs and twenty-nine unique CMs that are under consideration by the Gen3 CSP community. By analyzing the available body of research to date and combining it with our survey data from within the Gen3 CSP community, this paper presents trends of what people in the CSP world are thinking regarding materials worth investigating and suggests which thermophysical property measurements are critical to advance high-temperature CSP systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case Study of the Puna Geothermal Power Plant and Proposed Retrofit H2S Gas Mitigation Strategies Evaluating the Effective Solar Absorptance of Dilute Particle Configurations Use of Silica Coated Zinc Nanoparticles for Enhancement in Thermal Properties of Carbonate Eutectic Salt for Concentrated Solar Power Plants High-Temperature Thermophysical Property Measurement of Proposed Gen3 CSP Containment Materials Update on NREL Outdoor Exposure Campaign of Solar Mirrors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1