{"title":"纤维增强沥青混凝土疲劳性能试验及寿命计算","authors":"Meng Fenglin, Danying Gao, Faqi Chen, Chunshui Huang","doi":"10.18280/acsm.440209","DOIUrl":null,"url":null,"abstract":"Received: 17 December 2019 Accepted: 25 February 2020 This paper aims to accurately measure the fatigue performance and calculate the fatigue life of fiber-reinforced asphalt concrete (FRAC). Firstly, splitting fatigue tests were conducted under the stress control mode. Through the tests, the attenuation features of the FRAC stiffness modulus were analyzed with different fiber contents and length-todiameter ratios. Drawing on damage mechanics theory, a fatigue failure criterion was put forward for the FRAC. Based on stress ratiofatigue life (S-N) equation, the authors established a calculation model for fatigue life of the FRAC, in the light of the characteristic parameter of fiber content (FCCP). The results show that, the FCCP can reflect the combined effect of fiber content and length-to-diameter ratio on the fatigue performance of the FRAC; With the growth of the FCCP, the FRAC fatigue life always increased first and then decreased; The FRAC realized the longest fatigue life, and achieved the best fatigue performance at the FCCP of 1.13; For AC-13 polyester FRAC (PFAC), the fiber content, length-to-diameter ratio, and the FCCP were optimized as 0.35%, 324, and 1.13, respectively. The research results provide new insights to the fatigue performance of the FRAC.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"59 1","pages":"133-139"},"PeriodicalIF":0.6000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fatigue Performance Test and Life Calculation of Fiber-Reinforced Asphalt Concrete\",\"authors\":\"Meng Fenglin, Danying Gao, Faqi Chen, Chunshui Huang\",\"doi\":\"10.18280/acsm.440209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: 17 December 2019 Accepted: 25 February 2020 This paper aims to accurately measure the fatigue performance and calculate the fatigue life of fiber-reinforced asphalt concrete (FRAC). Firstly, splitting fatigue tests were conducted under the stress control mode. Through the tests, the attenuation features of the FRAC stiffness modulus were analyzed with different fiber contents and length-todiameter ratios. Drawing on damage mechanics theory, a fatigue failure criterion was put forward for the FRAC. Based on stress ratiofatigue life (S-N) equation, the authors established a calculation model for fatigue life of the FRAC, in the light of the characteristic parameter of fiber content (FCCP). The results show that, the FCCP can reflect the combined effect of fiber content and length-to-diameter ratio on the fatigue performance of the FRAC; With the growth of the FCCP, the FRAC fatigue life always increased first and then decreased; The FRAC realized the longest fatigue life, and achieved the best fatigue performance at the FCCP of 1.13; For AC-13 polyester FRAC (PFAC), the fiber content, length-to-diameter ratio, and the FCCP were optimized as 0.35%, 324, and 1.13, respectively. The research results provide new insights to the fatigue performance of the FRAC.\",\"PeriodicalId\":7897,\"journal\":{\"name\":\"Annales De Chimie-science Des Materiaux\",\"volume\":\"59 1\",\"pages\":\"133-139\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De Chimie-science Des Materiaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/acsm.440209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fatigue Performance Test and Life Calculation of Fiber-Reinforced Asphalt Concrete
Received: 17 December 2019 Accepted: 25 February 2020 This paper aims to accurately measure the fatigue performance and calculate the fatigue life of fiber-reinforced asphalt concrete (FRAC). Firstly, splitting fatigue tests were conducted under the stress control mode. Through the tests, the attenuation features of the FRAC stiffness modulus were analyzed with different fiber contents and length-todiameter ratios. Drawing on damage mechanics theory, a fatigue failure criterion was put forward for the FRAC. Based on stress ratiofatigue life (S-N) equation, the authors established a calculation model for fatigue life of the FRAC, in the light of the characteristic parameter of fiber content (FCCP). The results show that, the FCCP can reflect the combined effect of fiber content and length-to-diameter ratio on the fatigue performance of the FRAC; With the growth of the FCCP, the FRAC fatigue life always increased first and then decreased; The FRAC realized the longest fatigue life, and achieved the best fatigue performance at the FCCP of 1.13; For AC-13 polyester FRAC (PFAC), the fiber content, length-to-diameter ratio, and the FCCP were optimized as 0.35%, 324, and 1.13, respectively. The research results provide new insights to the fatigue performance of the FRAC.
期刊介绍:
The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.