{"title":"不同维度散射振幅的史瓦西-唐赫里尼度规","authors":"Stavros Mougiakakos, P. Vanhove","doi":"10.1103/physrevd.103.026001","DOIUrl":null,"url":null,"abstract":"We derive the static Schwarzschild-Tangherlini metric by extracting the classical contributions from the multi-loop vertex functions of a graviton emitted from a massive scalar field. At each loop orders the classical contribution is proportional to a unique master integral given by the massless sunset integral. By computing the scattering amplitudes up to three-loop order in general dimension, we explicitly derive the expansion of the metric up to the fourth post-Minkowskian order $O(G_N^4)$ in four, five and six dimensions. There are ultraviolet divergences that are cancelled with the introduction of higher-derivative non-minimal couplings. The standard Schwarzschild-Tangherlini is recovered by absorbing their effects by an appropriate coordinate transformation induced from the de Donder gauge condition.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Schwarzschild-Tangherlini metric from scattering amplitudes in various dimensions\",\"authors\":\"Stavros Mougiakakos, P. Vanhove\",\"doi\":\"10.1103/physrevd.103.026001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the static Schwarzschild-Tangherlini metric by extracting the classical contributions from the multi-loop vertex functions of a graviton emitted from a massive scalar field. At each loop orders the classical contribution is proportional to a unique master integral given by the massless sunset integral. By computing the scattering amplitudes up to three-loop order in general dimension, we explicitly derive the expansion of the metric up to the fourth post-Minkowskian order $O(G_N^4)$ in four, five and six dimensions. There are ultraviolet divergences that are cancelled with the introduction of higher-derivative non-minimal couplings. The standard Schwarzschild-Tangherlini is recovered by absorbing their effects by an appropriate coordinate transformation induced from the de Donder gauge condition.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.103.026001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.103.026001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Schwarzschild-Tangherlini metric from scattering amplitudes in various dimensions
We derive the static Schwarzschild-Tangherlini metric by extracting the classical contributions from the multi-loop vertex functions of a graviton emitted from a massive scalar field. At each loop orders the classical contribution is proportional to a unique master integral given by the massless sunset integral. By computing the scattering amplitudes up to three-loop order in general dimension, we explicitly derive the expansion of the metric up to the fourth post-Minkowskian order $O(G_N^4)$ in four, five and six dimensions. There are ultraviolet divergences that are cancelled with the introduction of higher-derivative non-minimal couplings. The standard Schwarzschild-Tangherlini is recovered by absorbing their effects by an appropriate coordinate transformation induced from the de Donder gauge condition.