时变图中的效率中心性

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Acta Universitatis Sapientiae Informatica Pub Date : 2020-07-01 DOI:10.2478/ausi-2020-0001
Péter Marjai, A. Kiss
{"title":"时变图中的效率中心性","authors":"Péter Marjai, A. Kiss","doi":"10.2478/ausi-2020-0001","DOIUrl":null,"url":null,"abstract":"Abstract One of the most studied aspect of complex graphs is identifying the most influential nodes. There are some local metrics like degree centrality, which is cost-effiective and easy to calculate, although using global metrics like betweenness centrality or closeness centrality can identify influential nodes more accurately, however calculating these values can be costly and each measure has it’s own limitations and disadvantages. There is an ever-growing interest in calculating such metrics in time-varying graphs (TVGs), since modern complex networks can be best modelled with such graphs. In this paper we are investigating the effectiveness of a new centrality measure called efficiency centrality in TVGs. To evaluate the performance of the algorithm Independent Cascade Model is used to simulate infection spreading in four real networks. To simulate the changes in the network we are deleting and adding nodes based on their degree centrality. We are investigating the Time-Constrained Coverage and the magnitude of propagation resulted by the use of the algorithm.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"56 1","pages":"21 - 5"},"PeriodicalIF":0.3000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency centrality in time-varying graphs\",\"authors\":\"Péter Marjai, A. Kiss\",\"doi\":\"10.2478/ausi-2020-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One of the most studied aspect of complex graphs is identifying the most influential nodes. There are some local metrics like degree centrality, which is cost-effiective and easy to calculate, although using global metrics like betweenness centrality or closeness centrality can identify influential nodes more accurately, however calculating these values can be costly and each measure has it’s own limitations and disadvantages. There is an ever-growing interest in calculating such metrics in time-varying graphs (TVGs), since modern complex networks can be best modelled with such graphs. In this paper we are investigating the effectiveness of a new centrality measure called efficiency centrality in TVGs. To evaluate the performance of the algorithm Independent Cascade Model is used to simulate infection spreading in four real networks. To simulate the changes in the network we are deleting and adding nodes based on their degree centrality. We are investigating the Time-Constrained Coverage and the magnitude of propagation resulted by the use of the algorithm.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"56 1\",\"pages\":\"21 - 5\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2020-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

复杂图中最具影响力的节点识别是研究最多的一个方面。有一些局部指标,如度中心性,这是经济有效的,易于计算,尽管使用全局指标,如中间中心性或接近中心性,可以更准确地识别有影响的节点,但是计算这些值可能是昂贵的,每个测量都有自己的局限性和缺点。人们对在时变图(tvg)中计算这类度量越来越感兴趣,因为现代复杂网络可以用这种图来最好地建模。本文研究了一种新的中心性度量——效率中心性在tvg中的有效性。为了评估算法的性能,采用独立级联模型模拟了四个真实网络中的感染传播。为了模拟网络的变化,我们根据节点的度中心性来删除和添加节点。我们正在研究使用该算法产生的时间约束覆盖和传播幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficiency centrality in time-varying graphs
Abstract One of the most studied aspect of complex graphs is identifying the most influential nodes. There are some local metrics like degree centrality, which is cost-effiective and easy to calculate, although using global metrics like betweenness centrality or closeness centrality can identify influential nodes more accurately, however calculating these values can be costly and each measure has it’s own limitations and disadvantages. There is an ever-growing interest in calculating such metrics in time-varying graphs (TVGs), since modern complex networks can be best modelled with such graphs. In this paper we are investigating the effectiveness of a new centrality measure called efficiency centrality in TVGs. To evaluate the performance of the algorithm Independent Cascade Model is used to simulate infection spreading in four real networks. To simulate the changes in the network we are deleting and adding nodes based on their degree centrality. We are investigating the Time-Constrained Coverage and the magnitude of propagation resulted by the use of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
期刊最新文献
E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles On agglomeration-based rupture degree in networks and a heuristic algorithm On domination in signed graphs Connected certified domination edge critical and stable graphs Eccentric connectivity index in transformation graph Gxy+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1