基于二元模糊测度的多实例Choquet积分在不精确标记遥感分类器融合中的应用

Xiaoxiao Du, Alina Zare, Derek T. Anderson
{"title":"基于二元模糊测度的多实例Choquet积分在不精确标记遥感分类器融合中的应用","authors":"Xiaoxiao Du, Alina Zare, Derek T. Anderson","doi":"10.1109/SSCI44817.2019.9002801","DOIUrl":null,"url":null,"abstract":"Classifier fusion methods integrate complementary information from multiple classifiers or detectors and can aid remote sensing applications such as target detection and hy-perspectral image analysis. The Choquet integral (CI), param-eterized by fuzzy measures (FMs), has been widely used in the literature as an effective non-linear fusion framework. Standard supervised CI fusion algorithms often require precise ground-truth labels for each training data point, which can be difficult or impossible to obtain for remote sensing data. Previously, we proposed a Multiple Instance Choquet Integral (MICI) classifier fusion approach to address such label uncertainty, yet it can be slow to train due to large search space for FM variables. In this paper, we propose a new efficient learning scheme using binary fuzzy measures (BFMs) with the MICI framework for two-class classifier fusion given ambiguously and imprecisely labeled training data. We present experimental results on both synthetic data and real target detection problems and show that the proposed MICI-BFM algorithm can effectively and efficiently perform classifier fusion given remote sensing data with imprecise labels.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"61 1","pages":"1154-1162"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multiple Instance Choquet Integral with Binary Fuzzy Measures for Remote Sensing Classifier Fusion with Imprecise Labels\",\"authors\":\"Xiaoxiao Du, Alina Zare, Derek T. Anderson\",\"doi\":\"10.1109/SSCI44817.2019.9002801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifier fusion methods integrate complementary information from multiple classifiers or detectors and can aid remote sensing applications such as target detection and hy-perspectral image analysis. The Choquet integral (CI), param-eterized by fuzzy measures (FMs), has been widely used in the literature as an effective non-linear fusion framework. Standard supervised CI fusion algorithms often require precise ground-truth labels for each training data point, which can be difficult or impossible to obtain for remote sensing data. Previously, we proposed a Multiple Instance Choquet Integral (MICI) classifier fusion approach to address such label uncertainty, yet it can be slow to train due to large search space for FM variables. In this paper, we propose a new efficient learning scheme using binary fuzzy measures (BFMs) with the MICI framework for two-class classifier fusion given ambiguously and imprecisely labeled training data. We present experimental results on both synthetic data and real target detection problems and show that the proposed MICI-BFM algorithm can effectively and efficiently perform classifier fusion given remote sensing data with imprecise labels.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"61 1\",\"pages\":\"1154-1162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9002801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

分类器融合方法集成了来自多个分类器或检测器的互补信息,可以帮助遥感应用,如目标检测和高光谱图像分析。基于模糊测度参数化的Choquet积分(CI)作为一种有效的非线性融合框架在文献中得到广泛应用。标准的监督CI融合算法通常需要对每个训练数据点进行精确的地面真值标记,这对于遥感数据来说很难或不可能获得。以前,我们提出了一种多实例Choquet积分(MICI)分类器融合方法来解决这种标签不确定性,但由于FM变量的搜索空间大,它的训练速度很慢。在本文中,我们提出了一种新的有效的学习方案,利用二元模糊度量(BFMs)和MICI框架,在给定模糊和不精确标记的训练数据下进行两类分类器融合。在合成数据和真实目标检测问题上的实验结果表明,在标签不精确的遥感数据中,所提出的MICI-BFM算法可以有效地进行分类器融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Instance Choquet Integral with Binary Fuzzy Measures for Remote Sensing Classifier Fusion with Imprecise Labels
Classifier fusion methods integrate complementary information from multiple classifiers or detectors and can aid remote sensing applications such as target detection and hy-perspectral image analysis. The Choquet integral (CI), param-eterized by fuzzy measures (FMs), has been widely used in the literature as an effective non-linear fusion framework. Standard supervised CI fusion algorithms often require precise ground-truth labels for each training data point, which can be difficult or impossible to obtain for remote sensing data. Previously, we proposed a Multiple Instance Choquet Integral (MICI) classifier fusion approach to address such label uncertainty, yet it can be slow to train due to large search space for FM variables. In this paper, we propose a new efficient learning scheme using binary fuzzy measures (BFMs) with the MICI framework for two-class classifier fusion given ambiguously and imprecisely labeled training data. We present experimental results on both synthetic data and real target detection problems and show that the proposed MICI-BFM algorithm can effectively and efficiently perform classifier fusion given remote sensing data with imprecise labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1