M³LVI:一种多特征、多度量、多环路、通过平滑和映射的激光雷达-视觉-惯性里程计

IF 1.9 4区 计算机科学 Q3 ENGINEERING, INDUSTRIAL Industrial Robot-The International Journal of Robotics Research and Application Pub Date : 2022-12-15 DOI:10.1108/ir-05-2022-0143
Jiaxiang Hu, Xiaojun Shi, Chunyun Ma, Xin Yao, Yingxin Wang
{"title":"M³LVI:一种多特征、多度量、多环路、通过平滑和映射的激光雷达-视觉-惯性里程计","authors":"Jiaxiang Hu, Xiaojun Shi, Chunyun Ma, Xin Yao, Yingxin Wang","doi":"10.1108/ir-05-2022-0143","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state estimation and mapping.\n\n\nDesign/methodology/approach\nM3LVI is built atop a factor graph and composed of two subsystems, a LiDAR-inertial system (LIS) and a visual-inertial system (VIS). LIS implements multi-feature extraction on point cloud, and then multi-metric transformation estimation is implemented to realize LiDAR odometry. LiDAR-enhanced images and IMU pre-integration have been used in VIS to realize visual odometry, providing a reliable initial guess for LIS matching module. Location recognition is performed by a dual loop module combined with Bag of Words and LiDAR-Iris to correct accumulated drift. M³LVI also functions properly when one of the subsystems failed, which greatly increases the robustness in degraded environments.\n\n\nFindings\nQuantitative experiments were conducted on the KITTI data set and the campus data set to evaluate the M3LVI. The experimental results show the algorithm has higher pose estimation accuracy than existing methods.\n\n\nPractical implications\nThe proposed method can greatly improve the positioning and mapping accuracy of AGV, and has an important impact on AGV material distribution, which is one of the most important applications of industrial robots.\n\n\nOriginality/value\nM3LVI divides the original point cloud into six types, and uses multi-metric transformation estimation to estimate the state of robot and adopts factor graph optimization model to optimize the state estimation, which improves the accuracy of pose estimation. When one subsystem fails, the other system can complete the positioning work independently, which greatly increases the robustness in degraded environments.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"M³LVI: a multi-feature, multi-metric, multi-loop, LiDAR-visual-inertial odometry via smoothing and mapping\",\"authors\":\"Jiaxiang Hu, Xiaojun Shi, Chunyun Ma, Xin Yao, Yingxin Wang\",\"doi\":\"10.1108/ir-05-2022-0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state estimation and mapping.\\n\\n\\nDesign/methodology/approach\\nM3LVI is built atop a factor graph and composed of two subsystems, a LiDAR-inertial system (LIS) and a visual-inertial system (VIS). LIS implements multi-feature extraction on point cloud, and then multi-metric transformation estimation is implemented to realize LiDAR odometry. LiDAR-enhanced images and IMU pre-integration have been used in VIS to realize visual odometry, providing a reliable initial guess for LIS matching module. Location recognition is performed by a dual loop module combined with Bag of Words and LiDAR-Iris to correct accumulated drift. M³LVI also functions properly when one of the subsystems failed, which greatly increases the robustness in degraded environments.\\n\\n\\nFindings\\nQuantitative experiments were conducted on the KITTI data set and the campus data set to evaluate the M3LVI. The experimental results show the algorithm has higher pose estimation accuracy than existing methods.\\n\\n\\nPractical implications\\nThe proposed method can greatly improve the positioning and mapping accuracy of AGV, and has an important impact on AGV material distribution, which is one of the most important applications of industrial robots.\\n\\n\\nOriginality/value\\nM3LVI divides the original point cloud into six types, and uses multi-metric transformation estimation to estimate the state of robot and adopts factor graph optimization model to optimize the state estimation, which improves the accuracy of pose estimation. When one subsystem fails, the other system can complete the positioning work independently, which greatly increases the robustness in degraded environments.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-05-2022-0143\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-05-2022-0143","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2

摘要

目的提出一种多特征、多度量、多环路紧密耦合的激光雷达-视觉-惯性里程计(M3LVI),用于高精度、鲁棒的状态估计和映射。m3lvi建立在一个因子图之上,由两个子系统组成,一个激光雷达惯性系统(LIS)和一个视觉惯性系统(VIS)。LIS对点云进行多特征提取,然后进行多度量变换估计,实现激光雷达测程。利用激光雷达增强图像和IMU预集成在VIS中实现视觉里程计,为LIS匹配模块提供了可靠的初始猜测。位置识别采用双环模块,结合Bag of Words和LiDAR-Iris校正累积漂移。当其中一个子系统发生故障时,M³LVI也能正常工作,这大大增加了退化环境中的鲁棒性。在KITTI数据集和校园数据集上进行了定量实验来评估M3LVI。实验结果表明,该算法具有比现有方法更高的姿态估计精度。该方法可以大大提高AGV的定位和测绘精度,并对AGV材料分布产生重要影响,这是工业机器人最重要的应用之一。Originality/valueM3LVI将原始点云划分为六种类型,采用多度量变换估计对机器人状态进行估计,并采用因子图优化模型对状态估计进行优化,提高了姿态估计的精度。当一个子系统出现故障时,另一个子系统可以独立完成定位工作,大大提高了系统在退化环境下的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M³LVI: a multi-feature, multi-metric, multi-loop, LiDAR-visual-inertial odometry via smoothing and mapping
Purpose The purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state estimation and mapping. Design/methodology/approach M3LVI is built atop a factor graph and composed of two subsystems, a LiDAR-inertial system (LIS) and a visual-inertial system (VIS). LIS implements multi-feature extraction on point cloud, and then multi-metric transformation estimation is implemented to realize LiDAR odometry. LiDAR-enhanced images and IMU pre-integration have been used in VIS to realize visual odometry, providing a reliable initial guess for LIS matching module. Location recognition is performed by a dual loop module combined with Bag of Words and LiDAR-Iris to correct accumulated drift. M³LVI also functions properly when one of the subsystems failed, which greatly increases the robustness in degraded environments. Findings Quantitative experiments were conducted on the KITTI data set and the campus data set to evaluate the M3LVI. The experimental results show the algorithm has higher pose estimation accuracy than existing methods. Practical implications The proposed method can greatly improve the positioning and mapping accuracy of AGV, and has an important impact on AGV material distribution, which is one of the most important applications of industrial robots. Originality/value M3LVI divides the original point cloud into six types, and uses multi-metric transformation estimation to estimate the state of robot and adopts factor graph optimization model to optimize the state estimation, which improves the accuracy of pose estimation. When one subsystem fails, the other system can complete the positioning work independently, which greatly increases the robustness in degraded environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
16.70%
发文量
86
审稿时长
5.7 months
期刊介绍: Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world. The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to: Automatic assembly Flexible manufacturing Programming optimisation Simulation and offline programming Service robots Autonomous robots Swarm intelligence Humanoid robots Prosthetics and exoskeletons Machine intelligence Military robots Underwater and aerial robots Cooperative robots Flexible grippers and tactile sensing Robot vision Teleoperation Mobile robots Search and rescue robots Robot welding Collision avoidance Robotic machining Surgical robots Call for Papers 2020 AI for Autonomous Unmanned Systems Agricultural Robot Brain-Computer Interfaces for Human-Robot Interaction Cooperative Robots Robots for Environmental Monitoring Rehabilitation Robots Wearable Robotics/Exoskeletons.
期刊最新文献
Research on dynamic parameter identification and collision detection method for cooperative robots Sequential calibration of transmission ratios for joints of 6-DOF serial industrial robots based on laser tracker Design and analysis of a continuum manipulator for use in narrow spaces Tightly coupled IMU-Laser-RTK odometry algorithm for underground multi-layer and large-scale environment Design, modeling and kinematic analysis of a multi-configuration dexterous hand with integrated high-dimensional sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1