减少频繁模式集

R. Bathoorn, Arne Koopman, A. Siebes
{"title":"减少频繁模式集","authors":"R. Bathoorn, Arne Koopman, A. Siebes","doi":"10.1109/ICDMW.2006.140","DOIUrl":null,"url":null,"abstract":"One of the major problems in frequent pattern mining is the explosion of the number of results, making it difficult to identify the interesting frequent patterns. In a recent paper [7] we have shown that an MDL-based approach gives a dramatic reduction of the number of frequent item sets to consider. Here we show that MDL gives similarly good reductions for frequent patterns on other types of data, viz., on sequences and trees. Reductions of two to three orders of magnitude are easily attained on data sets from the web-mining field.","PeriodicalId":91379,"journal":{"name":"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining","volume":"61 1","pages":"55-59"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Reducing the Frequent Pattern Set\",\"authors\":\"R. Bathoorn, Arne Koopman, A. Siebes\",\"doi\":\"10.1109/ICDMW.2006.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major problems in frequent pattern mining is the explosion of the number of results, making it difficult to identify the interesting frequent patterns. In a recent paper [7] we have shown that an MDL-based approach gives a dramatic reduction of the number of frequent item sets to consider. Here we show that MDL gives similarly good reductions for frequent patterns on other types of data, viz., on sequences and trees. Reductions of two to three orders of magnitude are easily attained on data sets from the web-mining field.\",\"PeriodicalId\":91379,\"journal\":{\"name\":\"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining\",\"volume\":\"61 1\",\"pages\":\"55-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2006.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2006.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

频繁模式挖掘的主要问题之一是结果数量的爆炸式增长,这使得识别有趣的频繁模式变得困难。在最近的一篇论文b[7]中,我们已经表明,基于mdl的方法可以显著减少需要考虑的频繁项集的数量。在这里,我们展示了MDL对其他类型的数据(即序列和树)上的频繁模式给出了类似的良好约简。在网络挖掘领域的数据集上,很容易实现两到三个数量级的缩减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing the Frequent Pattern Set
One of the major problems in frequent pattern mining is the explosion of the number of results, making it difficult to identify the interesting frequent patterns. In a recent paper [7] we have shown that an MDL-based approach gives a dramatic reduction of the number of frequent item sets to consider. Here we show that MDL gives similarly good reductions for frequent patterns on other types of data, viz., on sequences and trees. Reductions of two to three orders of magnitude are easily attained on data sets from the web-mining field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Attention Q-Network for Personalized Treatment Recommendation. Spatio-Temporal Trend Analysis of the Brazilian Elections Based on Twitter Data Process-oriented Iterative Multiple Alignment for Medical Process Mining. Generalized Additive Models from a Neural Network Perspective Data Modeling for Content-Based Support Environment Application on Epilepsy Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1