基于先验信息的高效卷积和串行卷积码的设计

A. Abrardo
{"title":"基于先验信息的高效卷积和串行卷积码的设计","authors":"A. Abrardo","doi":"10.1109/ICC.2010.5502283","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the design of optimized binary convolutional codes (CCs) and serially concatenated convolutional codes (SCCCs) in the presence of a-priori information (API) at the receiver. First, we propose a design criterion for CCs based on the minimization of the bit error proabability (BEP). In this case, relevant performance gains, with respect to previously proposed CCs, are obtained. These gains persist even in the presence of estimation errors on the API. Then, we apply the same BEP-based design criterion to SCCCs and derive good encoders' structures. In the SCCC case with API at the receiver, simulation results show substantial gains with respect to previously proposed parallel concatenated convolutional coding (PCCCing) schemes optimized under the assumption of no API at the decoder. Moreover, in the presence of strong API the proposed SCCCs allow to approach the Shannon limit (SL) more than any previously proposed turbo coding scheme.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Efficient Convolutional and Serially Concatenated Convolutional Codes with A-Priori Information\",\"authors\":\"A. Abrardo\",\"doi\":\"10.1109/ICC.2010.5502283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the design of optimized binary convolutional codes (CCs) and serially concatenated convolutional codes (SCCCs) in the presence of a-priori information (API) at the receiver. First, we propose a design criterion for CCs based on the minimization of the bit error proabability (BEP). In this case, relevant performance gains, with respect to previously proposed CCs, are obtained. These gains persist even in the presence of estimation errors on the API. Then, we apply the same BEP-based design criterion to SCCCs and derive good encoders' structures. In the SCCC case with API at the receiver, simulation results show substantial gains with respect to previously proposed parallel concatenated convolutional coding (PCCCing) schemes optimized under the assumption of no API at the decoder. Moreover, in the presence of strong API the proposed SCCCs allow to approach the Shannon limit (SL) more than any previously proposed turbo coding scheme.\",\"PeriodicalId\":6405,\"journal\":{\"name\":\"2010 IEEE International Conference on Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2010.5502283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5502283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重点研究了在接收端存在先验信息(API)的情况下,优化的二进制卷积码(cc)和串行卷积码(sccc)的设计。首先,我们提出了一种基于误码概率(BEP)最小化的cc设计准则。在这种情况下,相对于先前提出的cc,获得了相关的性能增益。即使在API上存在估计错误的情况下,这些收益仍然存在。然后,我们将相同的基于bep的设计准则应用于sccc,并推导出良好的编码器结构。在接收端有API的SCCC情况下,仿真结果显示,相对于先前提出的并行级联卷积编码(PCCCing)方案,在解码器没有API的假设下进行了优化,获得了实质性的收益。此外,在强API的存在下,所提出的sccc比以前提出的任何turbo编码方案都更接近香农极限(SL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Efficient Convolutional and Serially Concatenated Convolutional Codes with A-Priori Information
In this paper, we focus on the design of optimized binary convolutional codes (CCs) and serially concatenated convolutional codes (SCCCs) in the presence of a-priori information (API) at the receiver. First, we propose a design criterion for CCs based on the minimization of the bit error proabability (BEP). In this case, relevant performance gains, with respect to previously proposed CCs, are obtained. These gains persist even in the presence of estimation errors on the API. Then, we apply the same BEP-based design criterion to SCCCs and derive good encoders' structures. In the SCCC case with API at the receiver, simulation results show substantial gains with respect to previously proposed parallel concatenated convolutional coding (PCCCing) schemes optimized under the assumption of no API at the decoder. Moreover, in the presence of strong API the proposed SCCCs allow to approach the Shannon limit (SL) more than any previously proposed turbo coding scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Server Selection Algorithm for P2P IPTV over Fiber to the Node (FTTN) Networks Joint Discrete Power-Level and Delay Optimization for Network Coded Wireless Communications Throughput and Stability Improvements of Slotted ALOHA Based Wireless Networks under the Random Packet Destruction Dos Attack TOA Based Joint Synchronization and Localization Amplify-And-Forward MIMO Relaying with OSTBC over Nakagami-m Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1