{"title":"来自信噪比的宇宙射线的起源:第一次直接证明后的确认和挑战","authors":"M. Cardillo , M. Tavani , A. Giuliani","doi":"10.1016/j.nuclphysbps.2014.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>Until now, providing an experimental unambiguous proof of Cosmic Ray (CR) origin has been elusive. The SuperNova Remnant (SNR) study showed an increasingly complex scenario with a continuous elaboration of theoretical models. The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral continuum below 200 MeV which can be attributed to neutral pion emission. Our work is focused on a global re-assessment of all available data and models of particle acceleration in W44 and our analysis strengthens previous studies and observations of the W44 complex environment, providing new information for a more detailed modeling. However, having determined the hadronic nature of the gamma-ray emission on firm ground, a number of theoretical challenges remains to be addressed in the context of CR acceleration in SNRs.</p></div>","PeriodicalId":93343,"journal":{"name":"Nuclear physics. B, Proceedings, supplements","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nuclphysbps.2014.10.007","citationCount":"5","resultStr":"{\"title\":\"The origin of Cosmic-Rays from SNRs: confirmations and challenges after the first direct proof\",\"authors\":\"M. Cardillo , M. Tavani , A. Giuliani\",\"doi\":\"10.1016/j.nuclphysbps.2014.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Until now, providing an experimental unambiguous proof of Cosmic Ray (CR) origin has been elusive. The SuperNova Remnant (SNR) study showed an increasingly complex scenario with a continuous elaboration of theoretical models. The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral continuum below 200 MeV which can be attributed to neutral pion emission. Our work is focused on a global re-assessment of all available data and models of particle acceleration in W44 and our analysis strengthens previous studies and observations of the W44 complex environment, providing new information for a more detailed modeling. However, having determined the hadronic nature of the gamma-ray emission on firm ground, a number of theoretical challenges remains to be addressed in the context of CR acceleration in SNRs.</p></div>\",\"PeriodicalId\":93343,\"journal\":{\"name\":\"Nuclear physics. B, Proceedings, supplements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nuclphysbps.2014.10.007\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear physics. B, Proceedings, supplements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920563214002011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear physics. B, Proceedings, supplements","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920563214002011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The origin of Cosmic-Rays from SNRs: confirmations and challenges after the first direct proof
Until now, providing an experimental unambiguous proof of Cosmic Ray (CR) origin has been elusive. The SuperNova Remnant (SNR) study showed an increasingly complex scenario with a continuous elaboration of theoretical models. The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral continuum below 200 MeV which can be attributed to neutral pion emission. Our work is focused on a global re-assessment of all available data and models of particle acceleration in W44 and our analysis strengthens previous studies and observations of the W44 complex environment, providing new information for a more detailed modeling. However, having determined the hadronic nature of the gamma-ray emission on firm ground, a number of theoretical challenges remains to be addressed in the context of CR acceleration in SNRs.