基于残差的最优可变尺度参数自适应RBF插值方法

G. Veni, Chirala Satyanarayana, M. C. Krishnareddy
{"title":"基于残差的最优可变尺度参数自适应RBF插值方法","authors":"G. Veni, Chirala Satyanarayana, M. C. Krishnareddy","doi":"10.59441/ijame-2023-0004","DOIUrl":null,"url":null,"abstract":"In infinitely smooth Radial Basis Function (RBF) based interpolation, the scaling parameter plays an important role to obtain an accurate and stable numerical solution. When this method is applied to interpolate a function with sharp gradients, then adaptive methods will also play a significant role in determining an optimal number of centers according to the user desired accuracy. In this article, we test an optimization algorithm developed using the nonlinear optimization to find a scaling parameter for RBF along with an adaptive residual subsampling method [1] RBF interpolation. In this process, at each stage of adoption, the available optimal shape parameters have been obtained by solving the system of non-linear equations.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual error based adaptive method with an optimal variable scaling parameter for RBF interpolation\",\"authors\":\"G. Veni, Chirala Satyanarayana, M. C. Krishnareddy\",\"doi\":\"10.59441/ijame-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In infinitely smooth Radial Basis Function (RBF) based interpolation, the scaling parameter plays an important role to obtain an accurate and stable numerical solution. When this method is applied to interpolate a function with sharp gradients, then adaptive methods will also play a significant role in determining an optimal number of centers according to the user desired accuracy. In this article, we test an optimization algorithm developed using the nonlinear optimization to find a scaling parameter for RBF along with an adaptive residual subsampling method [1] RBF interpolation. In this process, at each stage of adoption, the available optimal shape parameters have been obtained by solving the system of non-linear equations.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame-2023-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在基于无限光滑径向基函数(RBF)的插值中,尺度参数对获得精确稳定的数值解起着重要作用。当该方法应用于具有尖锐梯度的函数内插时,自适应方法在根据用户期望的精度确定最优中心数方面也将发挥重要作用。在本文中,我们测试了使用非线性优化开发的优化算法来寻找RBF的缩放参数以及自适应残差子采样方法[1]RBF插值。在此过程中,通过求解非线性方程组,得到了各阶段可用的最优形状参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Residual error based adaptive method with an optimal variable scaling parameter for RBF interpolation
In infinitely smooth Radial Basis Function (RBF) based interpolation, the scaling parameter plays an important role to obtain an accurate and stable numerical solution. When this method is applied to interpolate a function with sharp gradients, then adaptive methods will also play a significant role in determining an optimal number of centers according to the user desired accuracy. In this article, we test an optimization algorithm developed using the nonlinear optimization to find a scaling parameter for RBF along with an adaptive residual subsampling method [1] RBF interpolation. In this process, at each stage of adoption, the available optimal shape parameters have been obtained by solving the system of non-linear equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1