利用超参数优化的驾驶员压力水平检测系统

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2024-07-03 DOI:10.1080/15472450.2022.2140046
{"title":"利用超参数优化的驾驶员压力水平检测系统","authors":"","doi":"10.1080/15472450.2022.2140046","DOIUrl":null,"url":null,"abstract":"<div><p>Stress and driving are a dangerous combination which can lead to crashes, as evidenced by the large number of road traffic crashes that involve stress. Therefore, it is essential to build a practical system that can classify driver stress level with high accuracy. However, the performance of such a system depends on hyperparameter optimization choices such as data segmentation (windowing hyperparameters). The configuration setting of hyperparameters, which has an enormous impact on the system performance, are typically hand-tuned while evaluating the algorithm. This tuning process is time consuming and there are also no generic optimal values for hyperparameters values. In this work, we propose a meta-heuristic approach to support automated hyperparameter optimization and provide a real-time driver stress detection system. This is the first systematic study of optimizing windowing hyperparameters based on Electrocardiogram (ECG) signal in the domain of driving safety. Our approach is to propose a framework based on Particle Swarm Optimization algorithm (PSO) to select an optimal/near optimal windowing hyperparameters values. The performance of the proposed framework is evaluated on two datasets: a public dataset (DRIVEDB dataset) and our collected dataset using an advanced simulator. DRIVEDB dataset was collected in a real-time driving scenario and our dataset was collected using an advanced driving simulator in the control environment. We demonstrate that optimizing the windowing hyperparameters yields significant improvement in terms of accuracy. The most accurate built model applied to the public dataset and our dataset, based on the selected windowing hyperparameters, achieved 92.12% and 77.78% accuracy, respectively.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 4","pages":"Pages 443-458"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Driver stress levels detection system using hyperparameter optimization\",\"authors\":\"\",\"doi\":\"10.1080/15472450.2022.2140046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stress and driving are a dangerous combination which can lead to crashes, as evidenced by the large number of road traffic crashes that involve stress. Therefore, it is essential to build a practical system that can classify driver stress level with high accuracy. However, the performance of such a system depends on hyperparameter optimization choices such as data segmentation (windowing hyperparameters). The configuration setting of hyperparameters, which has an enormous impact on the system performance, are typically hand-tuned while evaluating the algorithm. This tuning process is time consuming and there are also no generic optimal values for hyperparameters values. In this work, we propose a meta-heuristic approach to support automated hyperparameter optimization and provide a real-time driver stress detection system. This is the first systematic study of optimizing windowing hyperparameters based on Electrocardiogram (ECG) signal in the domain of driving safety. Our approach is to propose a framework based on Particle Swarm Optimization algorithm (PSO) to select an optimal/near optimal windowing hyperparameters values. The performance of the proposed framework is evaluated on two datasets: a public dataset (DRIVEDB dataset) and our collected dataset using an advanced simulator. DRIVEDB dataset was collected in a real-time driving scenario and our dataset was collected using an advanced driving simulator in the control environment. We demonstrate that optimizing the windowing hyperparameters yields significant improvement in terms of accuracy. The most accurate built model applied to the public dataset and our dataset, based on the selected windowing hyperparameters, achieved 92.12% and 77.78% accuracy, respectively.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 4\",\"pages\":\"Pages 443-458\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245023000270\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000270","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

压力和驾驶是一种危险的组合,可能导致交通事故,大量涉及压力的道路交通事故就是证明。因此,建立一个能对驾驶员压力水平进行高精度分类的实用系统至关重要。然而,这种系统的性能取决于超参数的优化选择,如数据分割(开窗超参数)。超参数的配置设置对系统性能影响巨大,通常需要在评估算法时进行手动调整。这种调整过程非常耗时,而且超参数值也没有通用的最优值。在这项工作中,我们提出了一种元启发式方法来支持自动超参数优化,并提供一个实时驾驶员压力检测系统。这是首次在驾驶安全领域对基于心电图(ECG)信号的窗口化超参数进行优化的系统性研究。我们的方法是提出一个基于粒子群优化算法(PSO)的框架,以选择最佳/近似最佳窗口超参数值。我们在两个数据集上评估了拟议框架的性能:一个公共数据集(DRIVEDB 数据集)和我们使用高级模拟器收集的数据集。DRIVEDB 数据集是在实时驾驶场景中收集的,而我们的数据集是在控制环境中使用高级驾驶模拟器收集的。我们证明,优化窗口超参数可显著提高准确性。根据所选的窗口化超参数,应用于公共数据集和我们的数据集的最准确模型分别达到了 92.12% 和 77.78% 的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Driver stress levels detection system using hyperparameter optimization

Stress and driving are a dangerous combination which can lead to crashes, as evidenced by the large number of road traffic crashes that involve stress. Therefore, it is essential to build a practical system that can classify driver stress level with high accuracy. However, the performance of such a system depends on hyperparameter optimization choices such as data segmentation (windowing hyperparameters). The configuration setting of hyperparameters, which has an enormous impact on the system performance, are typically hand-tuned while evaluating the algorithm. This tuning process is time consuming and there are also no generic optimal values for hyperparameters values. In this work, we propose a meta-heuristic approach to support automated hyperparameter optimization and provide a real-time driver stress detection system. This is the first systematic study of optimizing windowing hyperparameters based on Electrocardiogram (ECG) signal in the domain of driving safety. Our approach is to propose a framework based on Particle Swarm Optimization algorithm (PSO) to select an optimal/near optimal windowing hyperparameters values. The performance of the proposed framework is evaluated on two datasets: a public dataset (DRIVEDB dataset) and our collected dataset using an advanced simulator. DRIVEDB dataset was collected in a real-time driving scenario and our dataset was collected using an advanced driving simulator in the control environment. We demonstrate that optimizing the windowing hyperparameters yields significant improvement in terms of accuracy. The most accurate built model applied to the public dataset and our dataset, based on the selected windowing hyperparameters, achieved 92.12% and 77.78% accuracy, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Comparing the performance of metaheuristics on the Transit Network Frequency Setting Problem Scene adaptation in adverse conditions: a multi-sensor fusion framework for roadside traffic perception Activity-based and agent-based transport model of Melbourne: an open multi-modal transport simulation model for Greater Melbourne Analysis of spatial interactions among shared e-scooters, shared bikes, and public transit Resilience assessment and enhancement of urban road networks subject to traffic accidents: a network-scale optimization strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1