基于空间金字塔池的卷积神经网络文本检测

Rui Zhu, Xiao-Jiao Mao, Qi-Hai Zhu, Ning Li, Yubin Yang
{"title":"基于空间金字塔池的卷积神经网络文本检测","authors":"Rui Zhu, Xiao-Jiao Mao, Qi-Hai Zhu, Ning Li, Yubin Yang","doi":"10.1109/ICIP.2016.7532514","DOIUrl":null,"url":null,"abstract":"Text detection is a difficult task due to the significant diversity of the texts appearing in natural scene images. In this paper, we propose a novel text descriptor, SPP-net, extracted by equipping the Convolutional Neural Network (CNN) with spatial pyramid pooling. We first compute the feature maps from the original text lines without any cropping or warping, and then generate the fixed-size representations for text discrimination. Experimental results on the latest ICDAR 2011 and 2013 datasets have proven that the proposed descriptor outperforms the state-of-the-art methods by a noticeable margin on F-measure with its merit of incorporating multi-scale text information and its flexibility of describing text regions with different sizes and shapes.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"167 1","pages":"1032-1036"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Text detection based on convolutional neural networks with spatial pyramid pooling\",\"authors\":\"Rui Zhu, Xiao-Jiao Mao, Qi-Hai Zhu, Ning Li, Yubin Yang\",\"doi\":\"10.1109/ICIP.2016.7532514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text detection is a difficult task due to the significant diversity of the texts appearing in natural scene images. In this paper, we propose a novel text descriptor, SPP-net, extracted by equipping the Convolutional Neural Network (CNN) with spatial pyramid pooling. We first compute the feature maps from the original text lines without any cropping or warping, and then generate the fixed-size representations for text discrimination. Experimental results on the latest ICDAR 2011 and 2013 datasets have proven that the proposed descriptor outperforms the state-of-the-art methods by a noticeable margin on F-measure with its merit of incorporating multi-scale text information and its flexibility of describing text regions with different sizes and shapes.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"167 1\",\"pages\":\"1032-1036\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于自然场景图像中出现的文本具有显著的多样性,文本检测是一项艰巨的任务。在本文中,我们提出了一种新的文本描述符SPP-net,它通过卷积神经网络(CNN)的空间金字塔池来提取。我们首先从原始文本行计算特征映射,不进行任何裁剪或扭曲,然后生成固定大小的文本区分表示。在最新的ICDAR 2011和2013数据集上的实验结果证明,该描述符具有融合多尺度文本信息的优点以及描述不同大小和形状的文本区域的灵活性,在F-measure上明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text detection based on convolutional neural networks with spatial pyramid pooling
Text detection is a difficult task due to the significant diversity of the texts appearing in natural scene images. In this paper, we propose a novel text descriptor, SPP-net, extracted by equipping the Convolutional Neural Network (CNN) with spatial pyramid pooling. We first compute the feature maps from the original text lines without any cropping or warping, and then generate the fixed-size representations for text discrimination. Experimental results on the latest ICDAR 2011 and 2013 datasets have proven that the proposed descriptor outperforms the state-of-the-art methods by a noticeable margin on F-measure with its merit of incorporating multi-scale text information and its flexibility of describing text regions with different sizes and shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1