为什么或为什么不?辩护风格对聊天机器人推荐的影响

Daricia Wilkinson, Öznur Alkan, Q. Liao, Massimiliano Mattetti, Inge Vejsbjerg, Bart P. Knijnenburg, Elizabeth M. Daly
{"title":"为什么或为什么不?辩护风格对聊天机器人推荐的影响","authors":"Daricia Wilkinson, Öznur Alkan, Q. Liao, Massimiliano Mattetti, Inge Vejsbjerg, Bart P. Knijnenburg, Elizabeth M. Daly","doi":"10.1145/3441715","DOIUrl":null,"url":null,"abstract":"Chatbots or conversational recommenders have gained increasing popularity as a new paradigm for Recommender Systems (RS). Prior work on RS showed that providing explanations can improve transparency and trust, which are critical for the adoption of RS. Their interactive and engaging nature makes conversational recommenders a natural platform to not only provide recommendations but also justify the recommendations through explanations. The recent surge of interest inexplainable AI enables diverse styles of justification, and also invites questions on how styles of justification impact user perception. In this article, we explore the effect of “why” justifications and “why not” justifications on users’ perceptions of explainability and trust. We developed and tested a movie-recommendation chatbot that provides users with different types of justifications for the recommended items. Our online experiment (n = 310) demonstrates that the “why” justifications (but not the “why not” justifications) have a significant impact on users’ perception of the conversational recommender. Particularly, “why” justifications increase users’ perception of system transparency, which impacts perceived control, trusting beliefs and in turn influences users’ willingness to depend on the system’s advice. Finally, we discuss the design implications for decision-assisting chatbots.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"72 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Why or Why Not? The Effect of Justification Styles on Chatbot Recommendations\",\"authors\":\"Daricia Wilkinson, Öznur Alkan, Q. Liao, Massimiliano Mattetti, Inge Vejsbjerg, Bart P. Knijnenburg, Elizabeth M. Daly\",\"doi\":\"10.1145/3441715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chatbots or conversational recommenders have gained increasing popularity as a new paradigm for Recommender Systems (RS). Prior work on RS showed that providing explanations can improve transparency and trust, which are critical for the adoption of RS. Their interactive and engaging nature makes conversational recommenders a natural platform to not only provide recommendations but also justify the recommendations through explanations. The recent surge of interest inexplainable AI enables diverse styles of justification, and also invites questions on how styles of justification impact user perception. In this article, we explore the effect of “why” justifications and “why not” justifications on users’ perceptions of explainability and trust. We developed and tested a movie-recommendation chatbot that provides users with different types of justifications for the recommended items. Our online experiment (n = 310) demonstrates that the “why” justifications (but not the “why not” justifications) have a significant impact on users’ perception of the conversational recommender. Particularly, “why” justifications increase users’ perception of system transparency, which impacts perceived control, trusting beliefs and in turn influences users’ willingness to depend on the system’s advice. Finally, we discuss the design implications for decision-assisting chatbots.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"72 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3441715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3441715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

作为推荐系统(RS)的一种新范例,聊天机器人或会话推荐器越来越受欢迎。先前关于RS的研究表明,提供解释可以提高透明度和信任,这对RS的采用至关重要。它们的互动性和参与性使会话推荐成为一个自然的平台,不仅可以提供推荐,还可以通过解释来证明推荐的合理性。最近人们对难以解释的人工智能的兴趣激增,使得各种各样的辩护风格成为可能,也引发了关于辩护风格如何影响用户感知的问题。在本文中,我们探讨了“为什么”的理由和“为什么不”的理由对用户的可解释性和信任的看法的影响。我们开发并测试了一个电影推荐聊天机器人,它为用户推荐的电影提供了不同类型的理由。我们的在线实验(n = 310)表明,“为什么”的理由(而不是“为什么不”的理由)对用户对会话推荐的看法有显著影响。特别是,“为什么”的理由增加了用户对系统透明度的感知,这影响了感知控制、信任信念,进而影响了用户依赖系统建议的意愿。最后,我们讨论了决策辅助聊天机器人的设计含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Why or Why Not? The Effect of Justification Styles on Chatbot Recommendations
Chatbots or conversational recommenders have gained increasing popularity as a new paradigm for Recommender Systems (RS). Prior work on RS showed that providing explanations can improve transparency and trust, which are critical for the adoption of RS. Their interactive and engaging nature makes conversational recommenders a natural platform to not only provide recommendations but also justify the recommendations through explanations. The recent surge of interest inexplainable AI enables diverse styles of justification, and also invites questions on how styles of justification impact user perception. In this article, we explore the effect of “why” justifications and “why not” justifications on users’ perceptions of explainability and trust. We developed and tested a movie-recommendation chatbot that provides users with different types of justifications for the recommended items. Our online experiment (n = 310) demonstrates that the “why” justifications (but not the “why not” justifications) have a significant impact on users’ perception of the conversational recommender. Particularly, “why” justifications increase users’ perception of system transparency, which impacts perceived control, trusting beliefs and in turn influences users’ willingness to depend on the system’s advice. Finally, we discuss the design implications for decision-assisting chatbots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Graph Learning for Session-based Recommendation GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs Complex-valued Neural Network-based Quantum Language Models eFraudCom: An E-commerce Fraud Detection System via Competitive Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1