Duc-Ly Vu, Ivan Pashchenko, F. Massacci, H. Plate, A. Sabetta
{"title":"利用源代码存储库识别软件供应链攻击","authors":"Duc-Ly Vu, Ivan Pashchenko, F. Massacci, H. Plate, A. Sabetta","doi":"10.1145/3372297.3420015","DOIUrl":null,"url":null,"abstract":"Increasing popularity of third-party package repositories, like NPM, PyPI, or RubyGems, makes them an attractive target for software supply chain attacks. By injecting malicious code into legitimate packages, attackers were known to gain more than 100,000 downloads of compromised packages. Current approaches for identifying malicious payloads are resource demanding. Therefore, they might not be applicable for the on-the-fly detection of suspicious artifacts being uploaded to the package repository. In this respect, we propose to use source code repositories (e.g., those in Github) for detecting injections into the distributed artifacts of a package. Our preliminary evaluation demonstrates that the proposed approach captures known attacks when malicious code was injected into PyPI packages. The analysis of the 2666 software artifacts (from all versions of the top ten most downloaded Python packages in PyPI) suggests that the technique is suitable for lightweight analysis of real-world packages.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Towards Using Source Code Repositories to Identify Software Supply Chain Attacks\",\"authors\":\"Duc-Ly Vu, Ivan Pashchenko, F. Massacci, H. Plate, A. Sabetta\",\"doi\":\"10.1145/3372297.3420015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing popularity of third-party package repositories, like NPM, PyPI, or RubyGems, makes them an attractive target for software supply chain attacks. By injecting malicious code into legitimate packages, attackers were known to gain more than 100,000 downloads of compromised packages. Current approaches for identifying malicious payloads are resource demanding. Therefore, they might not be applicable for the on-the-fly detection of suspicious artifacts being uploaded to the package repository. In this respect, we propose to use source code repositories (e.g., those in Github) for detecting injections into the distributed artifacts of a package. Our preliminary evaluation demonstrates that the proposed approach captures known attacks when malicious code was injected into PyPI packages. The analysis of the 2666 software artifacts (from all versions of the top ten most downloaded Python packages in PyPI) suggests that the technique is suitable for lightweight analysis of real-world packages.\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3420015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3420015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Using Source Code Repositories to Identify Software Supply Chain Attacks
Increasing popularity of third-party package repositories, like NPM, PyPI, or RubyGems, makes them an attractive target for software supply chain attacks. By injecting malicious code into legitimate packages, attackers were known to gain more than 100,000 downloads of compromised packages. Current approaches for identifying malicious payloads are resource demanding. Therefore, they might not be applicable for the on-the-fly detection of suspicious artifacts being uploaded to the package repository. In this respect, we propose to use source code repositories (e.g., those in Github) for detecting injections into the distributed artifacts of a package. Our preliminary evaluation demonstrates that the proposed approach captures known attacks when malicious code was injected into PyPI packages. The analysis of the 2666 software artifacts (from all versions of the top ten most downloaded Python packages in PyPI) suggests that the technique is suitable for lightweight analysis of real-world packages.