Kolthoum Missaoui, Nader Frikha, A. Kheiri, S. Gabsi, M. El Ganaoui
{"title":"太阳能连续吸附制冷系统的性能分析","authors":"Kolthoum Missaoui, Nader Frikha, A. Kheiri, S. Gabsi, M. El Ganaoui","doi":"10.32604/fdmp.2022.021969","DOIUrl":null,"url":null,"abstract":"A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases, namely, the summer solstice (June 21st) and the autumn equinox (September 21st). The cooling capacity, system performance coefficient and the daily rate of available cooling energy are assessed. The main goal is to compare the performances of a solar adsorption chiller equipped with a hot water tank (HWT) with an equivalent system relying on solar collectors with no heat storage module. The daily cooling rates for the solar refrigerator are found to be 102.4 kWh and 74.3 kWh, respectively, on June 21st and on September 21st, using a total collector’s area of 43.47 m. The corresponding values for the adsorption chiller equipped with a hot water tank of 2 m (and using a total collector’s area of 72.45 m), are 127.1 kWh and 106.13 kWh, respectively.","PeriodicalId":45349,"journal":{"name":"FDMP-Fluid Dynamics & Materials Processing","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of a Solar Continuous Adsorption Refrigeration System\",\"authors\":\"Kolthoum Missaoui, Nader Frikha, A. Kheiri, S. Gabsi, M. El Ganaoui\",\"doi\":\"10.32604/fdmp.2022.021969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases, namely, the summer solstice (June 21st) and the autumn equinox (September 21st). The cooling capacity, system performance coefficient and the daily rate of available cooling energy are assessed. The main goal is to compare the performances of a solar adsorption chiller equipped with a hot water tank (HWT) with an equivalent system relying on solar collectors with no heat storage module. The daily cooling rates for the solar refrigerator are found to be 102.4 kWh and 74.3 kWh, respectively, on June 21st and on September 21st, using a total collector’s area of 43.47 m. The corresponding values for the adsorption chiller equipped with a hot water tank of 2 m (and using a total collector’s area of 72.45 m), are 127.1 kWh and 106.13 kWh, respectively.\",\"PeriodicalId\":45349,\"journal\":{\"name\":\"FDMP-Fluid Dynamics & Materials Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FDMP-Fluid Dynamics & Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/fdmp.2022.021969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FDMP-Fluid Dynamics & Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/fdmp.2022.021969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Performance Analysis of a Solar Continuous Adsorption Refrigeration System
A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases, namely, the summer solstice (June 21st) and the autumn equinox (September 21st). The cooling capacity, system performance coefficient and the daily rate of available cooling energy are assessed. The main goal is to compare the performances of a solar adsorption chiller equipped with a hot water tank (HWT) with an equivalent system relying on solar collectors with no heat storage module. The daily cooling rates for the solar refrigerator are found to be 102.4 kWh and 74.3 kWh, respectively, on June 21st and on September 21st, using a total collector’s area of 43.47 m. The corresponding values for the adsorption chiller equipped with a hot water tank of 2 m (and using a total collector’s area of 72.45 m), are 127.1 kWh and 106.13 kWh, respectively.
期刊介绍:
The scope of the Journal is covered by these topics (which could be updated): interplay between fluid motion and materials preparation processes (by means of: experimental investigation; computer modeling & simulation; novel numerical techniques and multiprocessor computations); multi-phase and multi-component systems; pattern formation; multi-scale modeling; interface-tracking methods (e.g., VOF, level-set) and moving boundaries; fluid-structure interactions; solidification; semiconductor crystals; metallurgy; dynamics of dispersed particles, bubbles and droplets (sedimentation, Marangoni migration, coalescence mechanisms, interaction with advancing fronts, etc.); dynamics and static behavior of fluid surfaces and interfaces.