一种用于识别电影搞笑场景的深度强化学习框架

Haoqi Li, Naveen Kumar, Ruxin Chen, P. Georgiou
{"title":"一种用于识别电影搞笑场景的深度强化学习框架","authors":"Haoqi Li, Naveen Kumar, Ruxin Chen, P. Georgiou","doi":"10.1109/ICASSP.2018.8462686","DOIUrl":null,"url":null,"abstract":"This paper presents a novel deep Reinforcement Learning (RL) framework for classifying movie scenes based on affect using the face images detected in the video stream as input. Extracting affective information from the video is a challenging task modulating complex visual and temporal representations intertwined with the complex aspects of human perception and information integration. This also makes it difficult to collect a large annotated corpus restricting the use of supervised learning methods. We present an alternative learning framework based on RL that is tolerant to label sparsity and can easily make use of any available ground truth in an online fashion. We employ this modified RL model for the binary classification of whether a scene is funny or not on a dataset of movie scene clips. The results show that our model correctly predicts 72.95% of the time on the 2–3 minute long movie scenes while on shorter scenes the accuracy obtained is 84.13%.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"22 1","pages":"3116-3120"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Deep Reinforcement Learning Framework for Identifying Funny Scenes in Movies\",\"authors\":\"Haoqi Li, Naveen Kumar, Ruxin Chen, P. Georgiou\",\"doi\":\"10.1109/ICASSP.2018.8462686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel deep Reinforcement Learning (RL) framework for classifying movie scenes based on affect using the face images detected in the video stream as input. Extracting affective information from the video is a challenging task modulating complex visual and temporal representations intertwined with the complex aspects of human perception and information integration. This also makes it difficult to collect a large annotated corpus restricting the use of supervised learning methods. We present an alternative learning framework based on RL that is tolerant to label sparsity and can easily make use of any available ground truth in an online fashion. We employ this modified RL model for the binary classification of whether a scene is funny or not on a dataset of movie scene clips. The results show that our model correctly predicts 72.95% of the time on the 2–3 minute long movie scenes while on shorter scenes the accuracy obtained is 84.13%.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"22 1\",\"pages\":\"3116-3120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种新的深度强化学习(RL)框架,利用视频流中检测到的人脸图像作为输入,基于情感对电影场景进行分类。从视频中提取情感信息是一项具有挑战性的任务,需要调节复杂的视觉和时间表征,这些表征与人类感知和信息整合的复杂方面交织在一起。这也使得收集大量带注释的语料库变得困难,限制了监督学习方法的使用。我们提出了一种基于强化学习的替代学习框架,它可以容忍标签稀疏性,并且可以在线方式轻松地利用任何可用的基础真值。我们使用这种改进的RL模型对电影场景片段数据集上的场景是否有趣进行二元分类。结果表明,我们的模型对2-3分钟长的电影场景的预测准确率为72.95%,对较短的场景的预测准确率为84.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Reinforcement Learning Framework for Identifying Funny Scenes in Movies
This paper presents a novel deep Reinforcement Learning (RL) framework for classifying movie scenes based on affect using the face images detected in the video stream as input. Extracting affective information from the video is a challenging task modulating complex visual and temporal representations intertwined with the complex aspects of human perception and information integration. This also makes it difficult to collect a large annotated corpus restricting the use of supervised learning methods. We present an alternative learning framework based on RL that is tolerant to label sparsity and can easily make use of any available ground truth in an online fashion. We employ this modified RL model for the binary classification of whether a scene is funny or not on a dataset of movie scene clips. The results show that our model correctly predicts 72.95% of the time on the 2–3 minute long movie scenes while on shorter scenes the accuracy obtained is 84.13%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1