{"title":"基于卫星的光子量子网络是小世界的","authors":"S. Brito, A. Canabarro, D. Cavalcanti, R. Chaves","doi":"10.1103/PRXQUANTUM.2.010304","DOIUrl":null,"url":null,"abstract":"Recent milestone experiments establishing satellite-to-ground quantum communication are paving the way for the development of the quantum internet, a network interconnected by quantum channels. Here we employ network theory to study the properties of the photonic networks that can be generated by satellite-based quantum communication and compare it with the optical-fiber counterpart. We predict that satellites can generate small-world networks, implying that physically distant nodes are actually near from a network perspective. We also analyse the connectivity properties of the network and show, in particular, that they are robust against random failures. This puts satellite-based quantum communication as the most promising technology to distribute entanglement across large distances in quantum networks of growing size and complexity.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Satellite-Based Photonic Quantum Networks Are Small-World\",\"authors\":\"S. Brito, A. Canabarro, D. Cavalcanti, R. Chaves\",\"doi\":\"10.1103/PRXQUANTUM.2.010304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent milestone experiments establishing satellite-to-ground quantum communication are paving the way for the development of the quantum internet, a network interconnected by quantum channels. Here we employ network theory to study the properties of the photonic networks that can be generated by satellite-based quantum communication and compare it with the optical-fiber counterpart. We predict that satellites can generate small-world networks, implying that physically distant nodes are actually near from a network perspective. We also analyse the connectivity properties of the network and show, in particular, that they are robust against random failures. This puts satellite-based quantum communication as the most promising technology to distribute entanglement across large distances in quantum networks of growing size and complexity.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PRXQUANTUM.2.010304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQUANTUM.2.010304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Satellite-Based Photonic Quantum Networks Are Small-World
Recent milestone experiments establishing satellite-to-ground quantum communication are paving the way for the development of the quantum internet, a network interconnected by quantum channels. Here we employ network theory to study the properties of the photonic networks that can be generated by satellite-based quantum communication and compare it with the optical-fiber counterpart. We predict that satellites can generate small-world networks, implying that physically distant nodes are actually near from a network perspective. We also analyse the connectivity properties of the network and show, in particular, that they are robust against random failures. This puts satellite-based quantum communication as the most promising technology to distribute entanglement across large distances in quantum networks of growing size and complexity.