用完全有限元方法求解扩展热弹性理论的一个问题

Om Namha Shivay, Santwana Mukhopadhyay
{"title":"用完全有限元方法求解扩展热弹性理论的一个问题","authors":"Om Namha Shivay, Santwana Mukhopadhyay","doi":"10.12921/CMST.2018.0000062","DOIUrl":null,"url":null,"abstract":": This paper attempts to apply a complete finite element approach for the solution of problems on coupled dynamical thermoelasticity theory. Presently, we employ the extended thermoelasticity theory proposed by Lord and Shulman (1969) and consider a problem of linear thermoelasticity for the hollow disk with a thermal shock applied on its inner boundary. The thermoelastic equations have been solved using the complete finite element approach, where we have used discretization in the time domain as well as space domain and applied the Galerkin’s approach of the finite element for both time and space domain. We implement our scheme for a particular case and carry out computational work to obtain the numerical solution of the problem. Further, we compare the present results with the solutions obtained by FEM with Newmark time integration method and the solutions obtained by a trans-FEM method in which Laplace transform technique is used for the time domain. We show that, there is a perfect match in solutions of complete finite element approach with trans-finite element method and Newmark method. The efficiency of the method with respect to computation time is also compared with other two methods.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"168 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the solution of a problem of extended thermoelasticity theory (ETE) by using a complete finite element approach\",\"authors\":\"Om Namha Shivay, Santwana Mukhopadhyay\",\"doi\":\"10.12921/CMST.2018.0000062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper attempts to apply a complete finite element approach for the solution of problems on coupled dynamical thermoelasticity theory. Presently, we employ the extended thermoelasticity theory proposed by Lord and Shulman (1969) and consider a problem of linear thermoelasticity for the hollow disk with a thermal shock applied on its inner boundary. The thermoelastic equations have been solved using the complete finite element approach, where we have used discretization in the time domain as well as space domain and applied the Galerkin’s approach of the finite element for both time and space domain. We implement our scheme for a particular case and carry out computational work to obtain the numerical solution of the problem. Further, we compare the present results with the solutions obtained by FEM with Newmark time integration method and the solutions obtained by a trans-FEM method in which Laplace transform technique is used for the time domain. We show that, there is a perfect match in solutions of complete finite element approach with trans-finite element method and Newmark method. The efficiency of the method with respect to computation time is also compared with other two methods.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"168 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/CMST.2018.0000062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2018.0000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文尝试用完全有限元方法求解耦合动力热弹性理论问题。目前,我们采用Lord和Shulman(1969)提出的扩展热弹性理论,考虑在空心圆盘的内边界施加热冲击时的线性热弹性问题。热弹性方程的求解采用完全有限元方法,在时域和空域均采用离散化方法,并在时域和空域均采用伽辽金有限元方法。我们针对一个特殊情况实施了我们的方案,并进行了计算工作以得到问题的数值解。此外,我们还将所得结果与采用Newmark时间积分法的有限元解法和采用拉普拉斯变换技术的时域反有限元解法进行了比较。证明了完全有限元方法的解与跨有限元法和Newmark法的解是完全匹配的。并与其他两种方法在计算时间方面的效率进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the solution of a problem of extended thermoelasticity theory (ETE) by using a complete finite element approach
: This paper attempts to apply a complete finite element approach for the solution of problems on coupled dynamical thermoelasticity theory. Presently, we employ the extended thermoelasticity theory proposed by Lord and Shulman (1969) and consider a problem of linear thermoelasticity for the hollow disk with a thermal shock applied on its inner boundary. The thermoelastic equations have been solved using the complete finite element approach, where we have used discretization in the time domain as well as space domain and applied the Galerkin’s approach of the finite element for both time and space domain. We implement our scheme for a particular case and carry out computational work to obtain the numerical solution of the problem. Further, we compare the present results with the solutions obtained by FEM with Newmark time integration method and the solutions obtained by a trans-FEM method in which Laplace transform technique is used for the time domain. We show that, there is a perfect match in solutions of complete finite element approach with trans-finite element method and Newmark method. The efficiency of the method with respect to computation time is also compared with other two methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contactless Patient Authentication for Registration Using Face Recognition Technology A Scalable Cloud-Based Medical Adherence System with Data Analytic for Enabling Home Hospitalization Fake News Detection Issues and Challenges for Teaching Successful Programming Courses at National Secondary Schools of Malaysia Computational Science and Technology: 7th ICCST 2020, Pattaya, Thailand, 29–30 August, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1