综合研究处理型和呈现型乳房x线影像放射学特征值的差异及其在BI-RADS密度分类中的判别能力

T. Wagner, L. Cockmartin, N. Marshall, Y. Wang, H. Bosmans
{"title":"综合研究处理型和呈现型乳房x线影像放射学特征值的差异及其在BI-RADS密度分类中的判别能力","authors":"T. Wagner, L. Cockmartin, N. Marshall, Y. Wang, H. Bosmans","doi":"10.1117/12.2625776","DOIUrl":null,"url":null,"abstract":"Aim: To assess the difference in radiomic feature values between pairs of mammographic images used for processing(FOR PROC) and for presentation(FOR PRES) as well as the ability to determine the BIRADS density classification from these radiomic features with different classification models. Methods: A dataset of FOR PROC and FOR PRES image pairs annotated with labels for the BI-RADS classification done by a radiologist is used in this study. The differences in radiomic feature values between the image types are evaluated with the intraclass correlation coefficient(ICC). Additionally, the discriminative power of radiomic feature values regarding the BI-RADS score is evaluated with Logistic Regression, Random Forest and a 5-layer deep Neural Network. The results of these models are evaluated with a 5-fold crossvalidation. Results: The reliability of radiomic feature is generally low between pairs of FOR PROC and FOR PRES images for all radiomic feature groups. Furthermore, the simple models used to determine the ability to assign the BI-RADS density classification based on the radiomic feature values reached insufficient accuracy to be considered adequate. Conclusion: The study revealed low reliability between both image types. Furthermore radiomic features alone seem to be insufficient to determine the BI-RADS classification using simple models.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"10 1","pages":"1228615 - 1228615-11"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study on the difference in radiomic feature values between for-processing and for-presentation mammographic images and their discriminative power regarding BI-RADS density classification\",\"authors\":\"T. Wagner, L. Cockmartin, N. Marshall, Y. Wang, H. Bosmans\",\"doi\":\"10.1117/12.2625776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: To assess the difference in radiomic feature values between pairs of mammographic images used for processing(FOR PROC) and for presentation(FOR PRES) as well as the ability to determine the BIRADS density classification from these radiomic features with different classification models. Methods: A dataset of FOR PROC and FOR PRES image pairs annotated with labels for the BI-RADS classification done by a radiologist is used in this study. The differences in radiomic feature values between the image types are evaluated with the intraclass correlation coefficient(ICC). Additionally, the discriminative power of radiomic feature values regarding the BI-RADS score is evaluated with Logistic Regression, Random Forest and a 5-layer deep Neural Network. The results of these models are evaluated with a 5-fold crossvalidation. Results: The reliability of radiomic feature is generally low between pairs of FOR PROC and FOR PRES images for all radiomic feature groups. Furthermore, the simple models used to determine the ability to assign the BI-RADS density classification based on the radiomic feature values reached insufficient accuracy to be considered adequate. Conclusion: The study revealed low reliability between both image types. Furthermore radiomic features alone seem to be insufficient to determine the BI-RADS classification using simple models.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"10 1\",\"pages\":\"1228615 - 1228615-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2625776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估用于处理(for PROC)和用于呈现(for PRES)的乳房x线摄影图像对放射学特征值的差异,以及根据这些放射学特征以不同的分类模型确定BIRADS密度分类的能力。方法:本研究使用由放射科医生完成的带有BI-RADS分类标签的FOR PROC和FOR PRES图像对数据集。用类内相关系数(ICC)评价图像类型之间放射学特征值的差异。此外,利用Logistic回归、随机森林和5层深度神经网络对BI-RADS评分的放射性特征值的判别能力进行了评估。这些模型的结果用5倍交叉验证进行评估。结果:对于所有放射学特征组,FOR PROC和FOR PRES图像对放射学特征的可靠性普遍较低。此外,用于确定基于放射学特征值分配BI-RADS密度分类能力的简单模型的准确性不足,不足以被认为是足够的。结论:研究显示两种图像类型之间的可靠性较低。此外,放射学特征本身似乎不足以用简单的模型来确定BI-RADS分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive study on the difference in radiomic feature values between for-processing and for-presentation mammographic images and their discriminative power regarding BI-RADS density classification
Aim: To assess the difference in radiomic feature values between pairs of mammographic images used for processing(FOR PROC) and for presentation(FOR PRES) as well as the ability to determine the BIRADS density classification from these radiomic features with different classification models. Methods: A dataset of FOR PROC and FOR PRES image pairs annotated with labels for the BI-RADS classification done by a radiologist is used in this study. The differences in radiomic feature values between the image types are evaluated with the intraclass correlation coefficient(ICC). Additionally, the discriminative power of radiomic feature values regarding the BI-RADS score is evaluated with Logistic Regression, Random Forest and a 5-layer deep Neural Network. The results of these models are evaluated with a 5-fold crossvalidation. Results: The reliability of radiomic feature is generally low between pairs of FOR PROC and FOR PRES images for all radiomic feature groups. Furthermore, the simple models used to determine the ability to assign the BI-RADS density classification based on the radiomic feature values reached insufficient accuracy to be considered adequate. Conclusion: The study revealed low reliability between both image types. Furthermore radiomic features alone seem to be insufficient to determine the BI-RADS classification using simple models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1