{"title":"时序蒙特卡罗采样器拟合和比较保险损失模型","authors":"P. Goffard","doi":"10.1080/03461238.2022.2145577","DOIUrl":null,"url":null,"abstract":"Insurance loss distributions are characterized by a high frequency of small claim amounts and a lower, but not insignificant, occurrence of large claim amounts. Composite models, which link two probability distributions, one for the ‘body’ and the other for the ‘tail’ of the loss distribution, have emerged in the actuarial literature to take this specificity into account. The parameters of these models summarize the distribution of the losses. One of them corresponds to the breaking point between small and large claim amounts. The composite models are usually fitted using maximum likelihood estimation. A Bayesian approach is considered in this work. Sequential Monte Carlo samplers are used to sample from the posterior distribution and compute the posterior model evidence to both fit and compare the competing models. The method is validated via a simulation study and illustrated on an insurance loss dataset.","PeriodicalId":49572,"journal":{"name":"Scandinavian Actuarial Journal","volume":"71 1","pages":"765 - 787"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Monte Carlo samplers to fit and compare insurance loss models\",\"authors\":\"P. Goffard\",\"doi\":\"10.1080/03461238.2022.2145577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insurance loss distributions are characterized by a high frequency of small claim amounts and a lower, but not insignificant, occurrence of large claim amounts. Composite models, which link two probability distributions, one for the ‘body’ and the other for the ‘tail’ of the loss distribution, have emerged in the actuarial literature to take this specificity into account. The parameters of these models summarize the distribution of the losses. One of them corresponds to the breaking point between small and large claim amounts. The composite models are usually fitted using maximum likelihood estimation. A Bayesian approach is considered in this work. Sequential Monte Carlo samplers are used to sample from the posterior distribution and compute the posterior model evidence to both fit and compare the competing models. The method is validated via a simulation study and illustrated on an insurance loss dataset.\",\"PeriodicalId\":49572,\"journal\":{\"name\":\"Scandinavian Actuarial Journal\",\"volume\":\"71 1\",\"pages\":\"765 - 787\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Actuarial Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/03461238.2022.2145577\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Actuarial Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/03461238.2022.2145577","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Sequential Monte Carlo samplers to fit and compare insurance loss models
Insurance loss distributions are characterized by a high frequency of small claim amounts and a lower, but not insignificant, occurrence of large claim amounts. Composite models, which link two probability distributions, one for the ‘body’ and the other for the ‘tail’ of the loss distribution, have emerged in the actuarial literature to take this specificity into account. The parameters of these models summarize the distribution of the losses. One of them corresponds to the breaking point between small and large claim amounts. The composite models are usually fitted using maximum likelihood estimation. A Bayesian approach is considered in this work. Sequential Monte Carlo samplers are used to sample from the posterior distribution and compute the posterior model evidence to both fit and compare the competing models. The method is validated via a simulation study and illustrated on an insurance loss dataset.
期刊介绍:
Scandinavian Actuarial Journal is a journal for actuarial sciences that deals, in theory and application, with mathematical methods for insurance and related matters.
The bounds of actuarial mathematics are determined by the area of application rather than by uniformity of methods and techniques. Therefore, a paper of interest to Scandinavian Actuarial Journal may have its theoretical basis in probability theory, statistics, operations research, numerical analysis, computer science, demography, mathematical economics, or any other area of applied mathematics; the main criterion is that the paper should be of specific relevance to actuarial applications.