Yuki Takashima, Yasuhiro Kakihara, Ryo Aihara, T. Takiguchi, Y. Ariki, Nobuyuki Mitani, K. Omori, Kaoru Nakazono
{"title":"基于卷积瓶颈网络的重度听力损失人的视听语音识别","authors":"Yuki Takashima, Yasuhiro Kakihara, Ryo Aihara, T. Takiguchi, Y. Ariki, Nobuyuki Mitani, K. Omori, Kaoru Nakazono","doi":"10.2197/ipsjtcva.7.64","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an audio-visual speech recognition system for a person with an articulation disorder resulting from severe hearing loss. In the case of a person with this type of articulation disorder, the speech style is quite different from with the result that of people without hearing loss that a speaker-independent model for unimpaired persons is hardly useful for recognizing it. We investigate in this paper an audio-visual speech recognition system for a person with severe hearing loss in noisy environments, where a robust feature extraction method using a convolutive bottleneck network (CBN) is applied to audio-visual data. We confirmed the effectiveness of this approach through word-recognition experiments in noisy environments, where the CBN-based feature extraction method outperformed the conventional methods.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"26 1","pages":"64-68"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Audio-Visual Speech Recognition Using Convolutive Bottleneck Networks for a Person with Severe Hearing Loss\",\"authors\":\"Yuki Takashima, Yasuhiro Kakihara, Ryo Aihara, T. Takiguchi, Y. Ariki, Nobuyuki Mitani, K. Omori, Kaoru Nakazono\",\"doi\":\"10.2197/ipsjtcva.7.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an audio-visual speech recognition system for a person with an articulation disorder resulting from severe hearing loss. In the case of a person with this type of articulation disorder, the speech style is quite different from with the result that of people without hearing loss that a speaker-independent model for unimpaired persons is hardly useful for recognizing it. We investigate in this paper an audio-visual speech recognition system for a person with severe hearing loss in noisy environments, where a robust feature extraction method using a convolutive bottleneck network (CBN) is applied to audio-visual data. We confirmed the effectiveness of this approach through word-recognition experiments in noisy environments, where the CBN-based feature extraction method outperformed the conventional methods.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"26 1\",\"pages\":\"64-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Audio-Visual Speech Recognition Using Convolutive Bottleneck Networks for a Person with Severe Hearing Loss
In this paper, we propose an audio-visual speech recognition system for a person with an articulation disorder resulting from severe hearing loss. In the case of a person with this type of articulation disorder, the speech style is quite different from with the result that of people without hearing loss that a speaker-independent model for unimpaired persons is hardly useful for recognizing it. We investigate in this paper an audio-visual speech recognition system for a person with severe hearing loss in noisy environments, where a robust feature extraction method using a convolutive bottleneck network (CBN) is applied to audio-visual data. We confirmed the effectiveness of this approach through word-recognition experiments in noisy environments, where the CBN-based feature extraction method outperformed the conventional methods.