基于稀疏观测的室外粒子滤波定位

Nils Einecke, A. Robert
{"title":"基于稀疏观测的室外粒子滤波定位","authors":"Nils Einecke, A. Robert","doi":"10.1109/ICAR46387.2019.8981650","DOIUrl":null,"url":null,"abstract":"Nowadays, autonomous lawn mowers are widely used in Europe. The robust autonomous operation and the ease of installation has lead to a substantial market share. Most autonomous lawn mowers move in a random fashion or with simple patterns because their self-localization capabilities are very limited. In this work, we analyze the potential of using apriori information about the shape of the boundary wire in combination with electromagnetic wire sensor readings for a particle-filter-based localization. In our experiments, this approach enables us to completely compensate for odometry drift. We achieve an accuracy of 20cm to 30cm in position and 3° in orientation for common garden sizes.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"11 1","pages":"590-597"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outdoor Particle Filter Localization with Sparse Observation\",\"authors\":\"Nils Einecke, A. Robert\",\"doi\":\"10.1109/ICAR46387.2019.8981650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, autonomous lawn mowers are widely used in Europe. The robust autonomous operation and the ease of installation has lead to a substantial market share. Most autonomous lawn mowers move in a random fashion or with simple patterns because their self-localization capabilities are very limited. In this work, we analyze the potential of using apriori information about the shape of the boundary wire in combination with electromagnetic wire sensor readings for a particle-filter-based localization. In our experiments, this approach enables us to completely compensate for odometry drift. We achieve an accuracy of 20cm to 30cm in position and 3° in orientation for common garden sizes.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"11 1\",\"pages\":\"590-597\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,自动割草机在欧洲被广泛使用。强大的自主操作和易于安装使其获得了可观的市场份额。大多数自动割草机以随机方式或简单模式移动,因为它们的自我定位能力非常有限。在这项工作中,我们分析了将关于边界线形状的先验信息与电磁线传感器读数相结合用于基于粒子滤波器的定位的潜力。在我们的实验中,这种方法使我们能够完全补偿里程计漂移。我们在位置上实现了20厘米到30厘米的精度,在普通花园尺寸上实现了3°的方向精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Outdoor Particle Filter Localization with Sparse Observation
Nowadays, autonomous lawn mowers are widely used in Europe. The robust autonomous operation and the ease of installation has lead to a substantial market share. Most autonomous lawn mowers move in a random fashion or with simple patterns because their self-localization capabilities are very limited. In this work, we analyze the potential of using apriori information about the shape of the boundary wire in combination with electromagnetic wire sensor readings for a particle-filter-based localization. In our experiments, this approach enables us to completely compensate for odometry drift. We achieve an accuracy of 20cm to 30cm in position and 3° in orientation for common garden sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Domain Randomization Techniques for Transfer Learning Robotito: programming robots from preschool to undergraduate school level A Novel Approach for Parameter Extraction of an NMPC-based Visual Follower Model Automated Conflict Resolution of Lane Change Utilizing Probability Collectives Estimating and Localizing External Forces Applied on Flexible Instruments by Shape Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1