J. Feinberg, Mark D. Bourne, I. Lascu, B. Strauss, Zongmin Zhu, Plinio Jaqueto
{"title":"溶洞矿床的环境磁性","authors":"J. Feinberg, Mark D. Bourne, I. Lascu, B. Strauss, Zongmin Zhu, Plinio Jaqueto","doi":"10.1130/abs/2017AM-307731","DOIUrl":null,"url":null,"abstract":"Caves are deep time archives of environmental conditions at the surface. Traditional paleoclimate proxies, such as oxygen and carbon isotopic ratios, are preserved within actively growing carbonate speleothems and can be constrained in time using high-resolution 230Th geochronology. While these isotopic speleothem proxies have revolutionized paleoclimate studies, here we discuss the use of magnetic measurements to constrain changes in the flux of Fe-bearing minerals (their composition, concentration, and magnetic grain size distribution) within the context of environmental change.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"186 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Magnetism of Cave Deposits\",\"authors\":\"J. Feinberg, Mark D. Bourne, I. Lascu, B. Strauss, Zongmin Zhu, Plinio Jaqueto\",\"doi\":\"10.1130/abs/2017AM-307731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Caves are deep time archives of environmental conditions at the surface. Traditional paleoclimate proxies, such as oxygen and carbon isotopic ratios, are preserved within actively growing carbonate speleothems and can be constrained in time using high-resolution 230Th geochronology. While these isotopic speleothem proxies have revolutionized paleoclimate studies, here we discuss the use of magnetic measurements to constrain changes in the flux of Fe-bearing minerals (their composition, concentration, and magnetic grain size distribution) within the context of environmental change.\",\"PeriodicalId\":14836,\"journal\":{\"name\":\"Japan Geoscience Union\",\"volume\":\"186 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Geoscience Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/abs/2017AM-307731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/abs/2017AM-307731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Caves are deep time archives of environmental conditions at the surface. Traditional paleoclimate proxies, such as oxygen and carbon isotopic ratios, are preserved within actively growing carbonate speleothems and can be constrained in time using high-resolution 230Th geochronology. While these isotopic speleothem proxies have revolutionized paleoclimate studies, here we discuss the use of magnetic measurements to constrain changes in the flux of Fe-bearing minerals (their composition, concentration, and magnetic grain size distribution) within the context of environmental change.