非交换相空间中的三维泡利方程

Ilyas Haouam
{"title":"非交换相空间中的三维泡利方程","authors":"Ilyas Haouam","doi":"10.14311/AP.2021.61.0230","DOIUrl":null,"url":null,"abstract":"In this paper, we obtained the three-dimensional Pauli equation for a spin-1/2 particle in the presence of an electromagnetic field in noncommutative phase-space, as well the corresponding deformed continuity equation, where the cases of a constant and non-constant magnetic field are considered. Due to the absence of the current magnetization term in the deformed continuity equation as expected, we had to extract it from the noncommutative Pauli equation itself without modifying the continuity equation. It is shown that the non-constant magnetic field lifts the order of the noncommutativity parameter in both the Pauli equation and the corresponding continuity equation. However, we successfully examined the effect of the noncommutativity on the current density and the magnetization current. By using a classical treatment, we derived the semi-classical noncommutative partition function of the three-dimensional Pauli system of the one-particle and N-particle systems. Then, we employed it for calculating the corresponding Helmholtz free energy followed by the magnetization and the magnetic susceptibility of electrons in both commutative and noncommutative phase-spaces. Knowing that with both the three-dimensional Bopp-Shift transformation and the Moyal-Weyl product, we introduced the phase-space noncommutativity in the problems in question.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"ON THE THREE-DIMENSIONAL PAULI EQUATION IN NONCOMMUTATIVE PHASE-SPACE\",\"authors\":\"Ilyas Haouam\",\"doi\":\"10.14311/AP.2021.61.0230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we obtained the three-dimensional Pauli equation for a spin-1/2 particle in the presence of an electromagnetic field in noncommutative phase-space, as well the corresponding deformed continuity equation, where the cases of a constant and non-constant magnetic field are considered. Due to the absence of the current magnetization term in the deformed continuity equation as expected, we had to extract it from the noncommutative Pauli equation itself without modifying the continuity equation. It is shown that the non-constant magnetic field lifts the order of the noncommutativity parameter in both the Pauli equation and the corresponding continuity equation. However, we successfully examined the effect of the noncommutativity on the current density and the magnetization current. By using a classical treatment, we derived the semi-classical noncommutative partition function of the three-dimensional Pauli system of the one-particle and N-particle systems. Then, we employed it for calculating the corresponding Helmholtz free energy followed by the magnetization and the magnetic susceptibility of electrons in both commutative and noncommutative phase-spaces. Knowing that with both the three-dimensional Bopp-Shift transformation and the Moyal-Weyl product, we introduced the phase-space noncommutativity in the problems in question.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/AP.2021.61.0230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/AP.2021.61.0230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文得到了非交换相空间中电磁场存在下自旋1/2粒子的三维泡利方程,以及相应的形变连续性方程,其中考虑了恒定磁场和非恒定磁场的情况。由于变形连续方程中电流磁化项的缺失,我们不得不在不修改连续方程的情况下,从非对易泡利方程中提取电流磁化项。结果表明,非恒定磁场提高了泡利方程和相应的连续性方程的非交换性参数的阶数。然而,我们成功地测试了非交换性对电流密度和磁化电流的影响。利用经典处理方法,导出了单粒子和n粒子三维泡利系统的半经典非交换配分函数。然后,我们用它来计算相应的亥姆霍兹自由能,然后计算电子在交换和非交换相空间中的磁化率和磁化率。了解了三维Bopp-Shift变换和Moyal-Weyl积,我们在问题中引入了相空间非交换性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ON THE THREE-DIMENSIONAL PAULI EQUATION IN NONCOMMUTATIVE PHASE-SPACE
In this paper, we obtained the three-dimensional Pauli equation for a spin-1/2 particle in the presence of an electromagnetic field in noncommutative phase-space, as well the corresponding deformed continuity equation, where the cases of a constant and non-constant magnetic field are considered. Due to the absence of the current magnetization term in the deformed continuity equation as expected, we had to extract it from the noncommutative Pauli equation itself without modifying the continuity equation. It is shown that the non-constant magnetic field lifts the order of the noncommutativity parameter in both the Pauli equation and the corresponding continuity equation. However, we successfully examined the effect of the noncommutativity on the current density and the magnetization current. By using a classical treatment, we derived the semi-classical noncommutative partition function of the three-dimensional Pauli system of the one-particle and N-particle systems. Then, we employed it for calculating the corresponding Helmholtz free energy followed by the magnetization and the magnetic susceptibility of electrons in both commutative and noncommutative phase-spaces. Knowing that with both the three-dimensional Bopp-Shift transformation and the Moyal-Weyl product, we introduced the phase-space noncommutativity in the problems in question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Non-isentropic Relativistic Euler System Written in a Symmetric Hyperbolic Form Thermodynamic formalism for generalized countable Markov shifts Chaos and Turing machines on bidimensional models at zero temperature The first order expansion of a ground state energy of the ϕ4 model with cutoffs The classical limit of mean-field quantum spin systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1