MBR中空纤维膜束振动特性分析

Prattakorn Sittisom, Yoonjae I, Tomoaki Itayama
{"title":"MBR中空纤维膜束振动特性分析","authors":"Prattakorn Sittisom, Yoonjae I, Tomoaki Itayama","doi":"10.54279/mijeec.v1i3.244930","DOIUrl":null,"url":null,"abstract":"We have focused on membrane vibration in MBR to find an effective design for the reduction of membrane fouling. In the previous study, we developed a direct measurement method for membrane vibration of a hollow fiber membrane (HFM) using an accelerometer (ACM). In this study, we studied on vibration characters on an HFM bundle in a practical membrane module in MBR using the ACMs in a large transparent water tank. Three ACMs were attached at the middle (P1), top (P2) and bottom (P3) position along a center line in the HFM bundle in which air was supplied from a diffuser below the membrane module with different aeration rates from 0 to 250 L/min. The acceleration of membrane vibration time series for the X-axis direction (left-right displacement) and Z-axis direction (back-front displacement) was recorded at three positions. The average vibration amplitudes of the acceleration along both directions at each position were increased as the aeration rate was increased. The HFM bundle showed a collective vibration with a frequency peak between 0 and 50 Hz. The Z-axis motion character of HFM bundle is regarded as a sheet vibration. The obtained vibration character was useful for the new design of a membrane module in MBR against the membrane fouling.","PeriodicalId":18176,"journal":{"name":"Maejo International Journal of Energy and Environmental Communication","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on a vibration character of hollow fiber membrane bundle in MBR\",\"authors\":\"Prattakorn Sittisom, Yoonjae I, Tomoaki Itayama\",\"doi\":\"10.54279/mijeec.v1i3.244930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have focused on membrane vibration in MBR to find an effective design for the reduction of membrane fouling. In the previous study, we developed a direct measurement method for membrane vibration of a hollow fiber membrane (HFM) using an accelerometer (ACM). In this study, we studied on vibration characters on an HFM bundle in a practical membrane module in MBR using the ACMs in a large transparent water tank. Three ACMs were attached at the middle (P1), top (P2) and bottom (P3) position along a center line in the HFM bundle in which air was supplied from a diffuser below the membrane module with different aeration rates from 0 to 250 L/min. The acceleration of membrane vibration time series for the X-axis direction (left-right displacement) and Z-axis direction (back-front displacement) was recorded at three positions. The average vibration amplitudes of the acceleration along both directions at each position were increased as the aeration rate was increased. The HFM bundle showed a collective vibration with a frequency peak between 0 and 50 Hz. The Z-axis motion character of HFM bundle is regarded as a sheet vibration. The obtained vibration character was useful for the new design of a membrane module in MBR against the membrane fouling.\",\"PeriodicalId\":18176,\"journal\":{\"name\":\"Maejo International Journal of Energy and Environmental Communication\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maejo International Journal of Energy and Environmental Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54279/mijeec.v1i3.244930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maejo International Journal of Energy and Environmental Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54279/mijeec.v1i3.244930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了找到一种有效的减少膜污染的设计方法,我们对MBR中的膜振动进行了研究。在之前的研究中,我们开发了一种使用加速度计(ACM)直接测量中空纤维膜(HFM)膜振动的方法。在本研究中,我们使用大型透明水箱中的ACMs,研究了MBR中实际膜模块中HFM束的振动特性。在HFM束的中间(P1)、顶部(P2)和底部(P3)位置沿中线连接3个acm,其中空气由膜组件下方的扩散器提供,曝气率从0到250 L/min不等。在三个位置分别记录x轴方向(左右位移)和z轴方向(前后位移)的膜振动时间序列加速度。各位置沿两个方向加速度的平均振动幅值随曝气率的增加而增大。HFM束呈现集体振动,频率峰值在0 ~ 50hz之间。将高频调频束的z轴运动特征视为片状振动。所获得的振动特性对MBR中膜组件抗膜污染的新设计具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis on a vibration character of hollow fiber membrane bundle in MBR
We have focused on membrane vibration in MBR to find an effective design for the reduction of membrane fouling. In the previous study, we developed a direct measurement method for membrane vibration of a hollow fiber membrane (HFM) using an accelerometer (ACM). In this study, we studied on vibration characters on an HFM bundle in a practical membrane module in MBR using the ACMs in a large transparent water tank. Three ACMs were attached at the middle (P1), top (P2) and bottom (P3) position along a center line in the HFM bundle in which air was supplied from a diffuser below the membrane module with different aeration rates from 0 to 250 L/min. The acceleration of membrane vibration time series for the X-axis direction (left-right displacement) and Z-axis direction (back-front displacement) was recorded at three positions. The average vibration amplitudes of the acceleration along both directions at each position were increased as the aeration rate was increased. The HFM bundle showed a collective vibration with a frequency peak between 0 and 50 Hz. The Z-axis motion character of HFM bundle is regarded as a sheet vibration. The obtained vibration character was useful for the new design of a membrane module in MBR against the membrane fouling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing sustainable energy opportunities through the integrated use of Canna indica biomass and buffalo manure for biogas generation Sustainability innovation and circular economy of freshwater hybrid catfish oil extraction A sustainable approach to control biofilms infections and reduce medical waste: Catheters coated with antibiotics inhibit single and dual-species biofilms Bioconvertibility of fermentative vert wine: a comparative study of blue- green algae, pineapple, and longan fruits Sustainable synthesis of silver nanoparticles from Canna edulis for eco- friendly applications and their phytochemical and antimicrobial assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1