用轮滑控制器确定再附着条件下机车驱动系统的动态特性

IF 3.3 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Zhejiang University-SCIENCE A Pub Date : 2023-07-28 DOI:10.1631/jzus.A2300158
Guosong Wu, Longjiang Shen, Yuan Yao, Wensheng Song, Jing-Fei Huang
{"title":"用轮滑控制器确定再附着条件下机车驱动系统的动态特性","authors":"Guosong Wu, Longjiang Shen, Yuan Yao, Wensheng Song, Jing-Fei Huang","doi":"10.1631/jzus.A2300158","DOIUrl":null,"url":null,"abstract":"To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller, a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK. The uniform running and starting conditions were considered, and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated. The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes. There are many frequency components in the vibration acceleration spectrum of the drive system, because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel–rail tangential force when stick-slip vibration occurs. In general, increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration. It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system, resulting in traction force fluctuation and poor acceleration performance.","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":"102 1","pages":"722 - 734"},"PeriodicalIF":3.3000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the dynamic characteristics of locomotive drive systems under re-adhesion conditions using wheel slip controller\",\"authors\":\"Guosong Wu, Longjiang Shen, Yuan Yao, Wensheng Song, Jing-Fei Huang\",\"doi\":\"10.1631/jzus.A2300158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller, a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK. The uniform running and starting conditions were considered, and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated. The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes. There are many frequency components in the vibration acceleration spectrum of the drive system, because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel–rail tangential force when stick-slip vibration occurs. In general, increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration. It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system, resulting in traction force fluctuation and poor acceleration performance.\",\"PeriodicalId\":17508,\"journal\":{\"name\":\"Journal of Zhejiang University-SCIENCE A\",\"volume\":\"102 1\",\"pages\":\"722 - 734\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-SCIENCE A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.A2300158\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/jzus.A2300158","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为研究采用轮滑控制器的机车驱动系统的再粘着特性和动态特性,利用SIMPACK和MATLAB/SIMULINK建立了列车系统的联合仿真模型。考虑均匀运行和起动条件,研究了驱动系统结构刚度和轮滑控制器对机车再附着和加速度性能的影响。仿真结果表明,在减粘恢复过程中,结构刚度越小的机车越容易发生粘滑振动。由于发生粘滑振动时轮对的纵向振动和旋转振动受轮轨切向力耦合,驱动系统的振动加速度谱中存在较多的频率分量。一般来说,增加驱动系统的结构刚度,及时降低输入能量是抑制粘滑振动的有效措施。还需要注意的是,轮滑控制器与驱动系统参数匹配不当,可能导致驱动系统机电耦合振动,导致牵引力波动,加速性能差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of the dynamic characteristics of locomotive drive systems under re-adhesion conditions using wheel slip controller
To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller, a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK. The uniform running and starting conditions were considered, and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated. The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes. There are many frequency components in the vibration acceleration spectrum of the drive system, because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel–rail tangential force when stick-slip vibration occurs. In general, increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration. It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system, resulting in traction force fluctuation and poor acceleration performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Zhejiang University-SCIENCE A
Journal of Zhejiang University-SCIENCE A 工程技术-工程:综合
CiteScore
5.60
自引率
12.50%
发文量
2964
审稿时长
2.9 months
期刊介绍: Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.
期刊最新文献
A novel approach for the optimal arrangement of tube bundles in a 1000-MW condenser Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator Dynamics of buoyancy-driven microflow in a narrow annular space Key technologies and development trends of the soft abrasive flow finishing method Solid-liquid flow characteristics and sticking-force analysis of valve-core fitting clearance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1