埃塞俄比亚谢瓦北部和东部禾本科和苏科禾本科根际真菌的鉴定

Birhanu Gizaw
{"title":"埃塞俄比亚谢瓦北部和东部禾本科和苏科禾本科根际真菌的鉴定","authors":"Birhanu Gizaw","doi":"10.19080/aibm.2018.11.555818","DOIUrl":null,"url":null,"abstract":"Poaceae are the fifth largest family of flowering plants following the Asteraceae, Orchidaceae, Fabaceae and Rubiaceae. Globally, about 12,000 grass species in about 771 genera that are classified into 12 subfamilies and the family is economically important because it includes Teff (Eragrottis teff), wheat (Triticum L.), rice (Oryza L.) and corn (Zea L.), as well as numerous forage, bamboo and biofuel grass species [1]. Grasses grow on all continents in tropical, temperate and Arctic zones and are absent only from Antarctica [2]. Grasses have long had significance in human society for feed and fodder for people and domesticated animals for thousands of years. During seed germination and seedling growth of this grass, there is great interaction with a range of microorganisms present in the surrounding soil. Root exudates from this grass are mainly composed of water-soluble sugars, organic acids, and amino acids, hormones, vitamins, amino compounds, phenolics and sugar phosphate esters [3]. Broadly, there are three distinct components recognized in the rhizosphere; the rhizosphere per se (soil), the rhizoplane, and the root itself. The rhizosphere is thus the zone of soil influenced by roots through the release of substrates that affect microbial activity. The rhizoplane is the root surface, including the strongly adhering root particles. The root itself is a part of the system, because certain endophytic microorganisms are able to colonize inner root tissues [4]. Microorganisms present in the rhizosphere play important roles in ecological fitness of their plant host. The rhizosphere is a hotspot of plant-microbe interactions with profound influence on plant productivity and ecosystem function [5]. Shaped by the release of labile carbon (C) from plant roots and root uptake of nutrients and water, the physiochemical environment of the rhizosphere supports a microbial community compositionally and metabolically distinct from that found in bulk soil [6]. The resulting rhizosphere microbiome performs critical functions, modulating plant growth and development [7], plant health, and plant nutrient acquisition [5] as well as the production of antibiotics, geochemical cycling of minerals and plant colonization [8]. Abstract","PeriodicalId":7446,"journal":{"name":"Advances in Biotechnology & Microbiology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhizospher fungi Identified from Poaceae and Cyperaceae Family Grass in North and East Shewa: Ethiopia\",\"authors\":\"Birhanu Gizaw\",\"doi\":\"10.19080/aibm.2018.11.555818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poaceae are the fifth largest family of flowering plants following the Asteraceae, Orchidaceae, Fabaceae and Rubiaceae. Globally, about 12,000 grass species in about 771 genera that are classified into 12 subfamilies and the family is economically important because it includes Teff (Eragrottis teff), wheat (Triticum L.), rice (Oryza L.) and corn (Zea L.), as well as numerous forage, bamboo and biofuel grass species [1]. Grasses grow on all continents in tropical, temperate and Arctic zones and are absent only from Antarctica [2]. Grasses have long had significance in human society for feed and fodder for people and domesticated animals for thousands of years. During seed germination and seedling growth of this grass, there is great interaction with a range of microorganisms present in the surrounding soil. Root exudates from this grass are mainly composed of water-soluble sugars, organic acids, and amino acids, hormones, vitamins, amino compounds, phenolics and sugar phosphate esters [3]. Broadly, there are three distinct components recognized in the rhizosphere; the rhizosphere per se (soil), the rhizoplane, and the root itself. The rhizosphere is thus the zone of soil influenced by roots through the release of substrates that affect microbial activity. The rhizoplane is the root surface, including the strongly adhering root particles. The root itself is a part of the system, because certain endophytic microorganisms are able to colonize inner root tissues [4]. Microorganisms present in the rhizosphere play important roles in ecological fitness of their plant host. The rhizosphere is a hotspot of plant-microbe interactions with profound influence on plant productivity and ecosystem function [5]. Shaped by the release of labile carbon (C) from plant roots and root uptake of nutrients and water, the physiochemical environment of the rhizosphere supports a microbial community compositionally and metabolically distinct from that found in bulk soil [6]. The resulting rhizosphere microbiome performs critical functions, modulating plant growth and development [7], plant health, and plant nutrient acquisition [5] as well as the production of antibiotics, geochemical cycling of minerals and plant colonization [8]. Abstract\",\"PeriodicalId\":7446,\"journal\":{\"name\":\"Advances in Biotechnology & Microbiology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Biotechnology & Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/aibm.2018.11.555818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Biotechnology & Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/aibm.2018.11.555818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

豆科是继菊科、兰科、豆科和茜草科之后的第五大开花植物科。在全球范围内,约有771属的约12,000种草,分为12个亚科,该科具有重要的经济意义,因为它包括苔麸(Eragrottis Teff)、小麦(Triticum L.)、水稻(Oryza L.)和玉米(Zea L.),以及众多的饲料、竹子和生物燃料草[1]。草本植物生长在所有大陆的热带、温带和北极地区,只有南极洲没有草本植物[2]。几千年来,草作为人类和家畜的饲料和饲料,在人类社会中一直具有重要意义。在这种草的种子萌发和幼苗生长过程中,与周围土壤中存在的一系列微生物有很大的相互作用。根分泌物主要由水溶性糖、有机酸、氨基酸、激素、维生素、氨基化合物、酚类物质和糖磷酸酯等组成[3]。从广义上讲,在根际中有三种不同的成分;根际本身(土壤)、根面和根本身。因此,根际是根通过释放影响微生物活动的基质而影响土壤的区域。根面是指根的表面,包括具有很强附着力的根颗粒。根本身也是系统的一部分,因为某些内生微生物能够在根内组织定植[4]。根际微生物在植物寄主的生态适应性中起着重要的作用。根际是植物与微生物相互作用的热点,对植物生产力和生态系统功能有着深远的影响[5]。受植物根系释放的活性碳(C)和根系对养分和水分的吸收影响,根际的物理化学环境支持着一个在组成和代谢方面不同于散装土壤中的微生物群落[6]。由此产生的根际微生物群具有关键功能,调节植物生长发育[7]、植物健康和植物营养获取[5],以及抗生素的产生、矿物的地球化学循环和植物定植[8]。摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rhizospher fungi Identified from Poaceae and Cyperaceae Family Grass in North and East Shewa: Ethiopia
Poaceae are the fifth largest family of flowering plants following the Asteraceae, Orchidaceae, Fabaceae and Rubiaceae. Globally, about 12,000 grass species in about 771 genera that are classified into 12 subfamilies and the family is economically important because it includes Teff (Eragrottis teff), wheat (Triticum L.), rice (Oryza L.) and corn (Zea L.), as well as numerous forage, bamboo and biofuel grass species [1]. Grasses grow on all continents in tropical, temperate and Arctic zones and are absent only from Antarctica [2]. Grasses have long had significance in human society for feed and fodder for people and domesticated animals for thousands of years. During seed germination and seedling growth of this grass, there is great interaction with a range of microorganisms present in the surrounding soil. Root exudates from this grass are mainly composed of water-soluble sugars, organic acids, and amino acids, hormones, vitamins, amino compounds, phenolics and sugar phosphate esters [3]. Broadly, there are three distinct components recognized in the rhizosphere; the rhizosphere per se (soil), the rhizoplane, and the root itself. The rhizosphere is thus the zone of soil influenced by roots through the release of substrates that affect microbial activity. The rhizoplane is the root surface, including the strongly adhering root particles. The root itself is a part of the system, because certain endophytic microorganisms are able to colonize inner root tissues [4]. Microorganisms present in the rhizosphere play important roles in ecological fitness of their plant host. The rhizosphere is a hotspot of plant-microbe interactions with profound influence on plant productivity and ecosystem function [5]. Shaped by the release of labile carbon (C) from plant roots and root uptake of nutrients and water, the physiochemical environment of the rhizosphere supports a microbial community compositionally and metabolically distinct from that found in bulk soil [6]. The resulting rhizosphere microbiome performs critical functions, modulating plant growth and development [7], plant health, and plant nutrient acquisition [5] as well as the production of antibiotics, geochemical cycling of minerals and plant colonization [8]. Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Landscape (At March 2019) Of Chimeric Antigen Receptor T Cell Clinical Trials Comment on: Occurrence of Vancomycin-Resistant Staphylococcus aureus (VRSA) in Clinical and Community Isolates with in the University of Port Harcourt Forest Role and Influence on Agricultural Production and Food Security Molecular Mechanisms Involved in Yeast Fitness for Ethanol Production Niazboo (Ocimum Basilicum) As Medicinal Plant Establishes Against Salinity and Sodicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1