利用辐射传输模型和Sentinel-2数据估算北澳大利亚热带稀树草原的烧伤严重程度

Changming Yin, B. He, M. Yebra, Xingwen Quan, A. Edwards, Xiangzhuo Liu, Zhanmang Liao, Kaiwei Luo
{"title":"利用辐射传输模型和Sentinel-2数据估算北澳大利亚热带稀树草原的烧伤严重程度","authors":"Changming Yin, B. He, M. Yebra, Xingwen Quan, A. Edwards, Xiangzhuo Liu, Zhanmang Liao, Kaiwei Luo","doi":"10.1109/IGARSS.2019.8899857","DOIUrl":null,"url":null,"abstract":"In this study, the burn severity of several wildfires ignited at northern Australian tropical savannas area were estimated using the Forest Reflectance and Transmittance (FRT) radiative transfer model (RTM) and Sentinel-2A Multi-Spectral Instrument (MSI) satellite data. To alleviate the spectral confusion between severe (SV) and not-severe (NSV) burnt levels caused by sparse tree distribution, the MODIS Vegetation Continuous Fields (VCF) tree cover percentage data was used to constrain the inversion. The results showed that the accuracy of burn severity estimation significantly improves when considering the tree coverage, with overall accuracy for two study sites increasing from 65% to 81% and kappa coefficient from 0.35 to 0.55. Future work will focus on extending the methodology to other ecosystems.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"113 1","pages":"6712-6715"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data\",\"authors\":\"Changming Yin, B. He, M. Yebra, Xingwen Quan, A. Edwards, Xiangzhuo Liu, Zhanmang Liao, Kaiwei Luo\",\"doi\":\"10.1109/IGARSS.2019.8899857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the burn severity of several wildfires ignited at northern Australian tropical savannas area were estimated using the Forest Reflectance and Transmittance (FRT) radiative transfer model (RTM) and Sentinel-2A Multi-Spectral Instrument (MSI) satellite data. To alleviate the spectral confusion between severe (SV) and not-severe (NSV) burnt levels caused by sparse tree distribution, the MODIS Vegetation Continuous Fields (VCF) tree cover percentage data was used to constrain the inversion. The results showed that the accuracy of burn severity estimation significantly improves when considering the tree coverage, with overall accuracy for two study sites increasing from 65% to 81% and kappa coefficient from 0.35 to 0.55. Future work will focus on extending the methodology to other ecosystems.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"113 1\",\"pages\":\"6712-6715\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8899857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用森林反射率和透射率(FRT)辐射传输模型(RTM)和Sentinel-2A多光谱仪器(MSI)卫星数据,估算了澳大利亚北部热带稀树草原地区几起野火的燃烧程度。为了减轻由于树木分布稀疏造成的严重(SV)和非严重(NSV)烧伤程度的光谱混淆,利用MODIS植被连续场(VCF)树木覆盖百分比数据对反演进行约束。结果表明,考虑树木覆盖度后,烧伤严重程度估算的准确度显著提高,两个研究点的总体准确度从65%提高到81%,kappa系数从0.35提高到0.55。未来的工作将侧重于将该方法扩展到其他生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data
In this study, the burn severity of several wildfires ignited at northern Australian tropical savannas area were estimated using the Forest Reflectance and Transmittance (FRT) radiative transfer model (RTM) and Sentinel-2A Multi-Spectral Instrument (MSI) satellite data. To alleviate the spectral confusion between severe (SV) and not-severe (NSV) burnt levels caused by sparse tree distribution, the MODIS Vegetation Continuous Fields (VCF) tree cover percentage data was used to constrain the inversion. The results showed that the accuracy of burn severity estimation significantly improves when considering the tree coverage, with overall accuracy for two study sites increasing from 65% to 81% and kappa coefficient from 0.35 to 0.55. Future work will focus on extending the methodology to other ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1