基于偏振合成孔径雷达与光学数据集成的作物产量预测

M. Hosseini, I. Becker-Reshef, R. Sahajpal, Lucas Fontana, P. Lafluf, G. Leale, E. Puricelli, M. Varela, C. Justice
{"title":"基于偏振合成孔径雷达与光学数据集成的作物产量预测","authors":"M. Hosseini, I. Becker-Reshef, R. Sahajpal, Lucas Fontana, P. Lafluf, G. Leale, E. Puricelli, M. Varela, C. Justice","doi":"10.1109/InGARSS48198.2020.9358978","DOIUrl":null,"url":null,"abstract":"In this study, double-bounce parameter derived from Sentinel-1 was integrated with Difference vegetation index (DVI) derived from Landsat-8 for prediction of soybean yield at field level over central Argentina. Artificial Neural Network (ANN) model was trained using time series of Synthetic Aperture Radar (SAR) and optical features during the growing season. For comparison of SAR versus optical versus their integration for soybean yield prediction, the ANN model was trained and tested for three scenarios of SAR-only, optical-only and SAR-optical integration. Accuracies of yield prediction including correlation of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) are 0.80, 0.589 t/ha, 0.445 t/ha for SAR-only; 0.65, 0.800 t/ha, 0.546 t/ha for optical-only; and 0.85, 0.554 t/ha, 0.389 t/ha for SAR-optical integration scenarios, respectively. These accuracies demonstrate of high potential of SAR and SAR-optical integration for soybean yield prediction at field level.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"35 1","pages":"17-20"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop Yield Prediction Using Integration Of Polarimteric Synthetic Aperture Radar And Optical Data\",\"authors\":\"M. Hosseini, I. Becker-Reshef, R. Sahajpal, Lucas Fontana, P. Lafluf, G. Leale, E. Puricelli, M. Varela, C. Justice\",\"doi\":\"10.1109/InGARSS48198.2020.9358978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, double-bounce parameter derived from Sentinel-1 was integrated with Difference vegetation index (DVI) derived from Landsat-8 for prediction of soybean yield at field level over central Argentina. Artificial Neural Network (ANN) model was trained using time series of Synthetic Aperture Radar (SAR) and optical features during the growing season. For comparison of SAR versus optical versus their integration for soybean yield prediction, the ANN model was trained and tested for three scenarios of SAR-only, optical-only and SAR-optical integration. Accuracies of yield prediction including correlation of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) are 0.80, 0.589 t/ha, 0.445 t/ha for SAR-only; 0.65, 0.800 t/ha, 0.546 t/ha for optical-only; and 0.85, 0.554 t/ha, 0.389 t/ha for SAR-optical integration scenarios, respectively. These accuracies demonstrate of high potential of SAR and SAR-optical integration for soybean yield prediction at field level.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"35 1\",\"pages\":\"17-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究将Sentinel-1卫星的双反弹参数与Landsat-8卫星的植被差异指数(DVI)相结合,用于预测阿根廷中部地区的大豆大田产量。利用合成孔径雷达(SAR)的时间序列和生长季节的光学特征训练人工神经网络(ANN)模型。为了比较合成孔径雷达与光学及其集成对大豆产量的预测效果,对人工神经网络模型进行了训练和测试,测试了三种场景:仅合成孔径雷达、仅光学和合成孔径雷达与光学集成。单用sar进行产量预测,包括决定相关性(R2)、均方根误差(RMSE)和平均绝对误差(MAE)的预测精度分别为0.80、0.589和0.445 t/ha;0.65、0.800 t/ha、纯光学0.546 t/ha;sar -光一体化场景下,分别为0.85、0.554、0.389 t/ha。这些精度表明,SAR和SAR-光学集成技术在大豆大田产量预测中具有很高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crop Yield Prediction Using Integration Of Polarimteric Synthetic Aperture Radar And Optical Data
In this study, double-bounce parameter derived from Sentinel-1 was integrated with Difference vegetation index (DVI) derived from Landsat-8 for prediction of soybean yield at field level over central Argentina. Artificial Neural Network (ANN) model was trained using time series of Synthetic Aperture Radar (SAR) and optical features during the growing season. For comparison of SAR versus optical versus their integration for soybean yield prediction, the ANN model was trained and tested for three scenarios of SAR-only, optical-only and SAR-optical integration. Accuracies of yield prediction including correlation of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) are 0.80, 0.589 t/ha, 0.445 t/ha for SAR-only; 0.65, 0.800 t/ha, 0.546 t/ha for optical-only; and 0.85, 0.554 t/ha, 0.389 t/ha for SAR-optical integration scenarios, respectively. These accuracies demonstrate of high potential of SAR and SAR-optical integration for soybean yield prediction at field level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1